mlx/mlx/backend/metal/unary.cpp
Awni Hannun 6bd28d246e
Allow no copy negative strides in as_strided and slice (#1688)
* allow no copy negative strides in as_strided and slice

* fix jit

* fix jit
2024-12-12 08:59:45 -08:00

177 lines
4.8 KiB
C++

// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/utils.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h"
#define UNARY_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
unary_op_gpu(inputs, out, get_primitive_string(this)); \
}
namespace mlx::core {
void unary_op_gpu_inplace(
const std::vector<array>& inputs,
array& out,
const std::string op,
const Stream& s) {
auto& in = inputs[0];
bool contig = in.flags().contiguous;
if (in.size() == 0) {
return;
}
auto& d = metal::device(s.device);
auto maybe_collapse = [contig, &in, &out]() {
if (!contig) {
return collapse_contiguous_dims(in);
} else {
return std::make_pair(Shape{}, Strides{});
}
};
auto [shape, strides] = maybe_collapse();
int ndim = shape.size();
size_t nthreads = contig ? in.data_size() : in.size();
bool large;
if (!contig) {
large = in.data_size() > INT32_MAX || out.size() > INT32_MAX;
} else {
large = in.data_size() > UINT32_MAX;
}
int work_per_thread = !contig && large ? 4 : 1;
std::string kernel_name;
if (contig) {
kernel_name = (large ? "v2" : "v");
} else {
kernel_name = "gn" + std::to_string(work_per_thread);
if (large) {
kernel_name += "_large";
}
}
concatenate(kernel_name, "_", op, type_to_name(in), type_to_name(out));
auto kernel = get_unary_kernel(d, kernel_name, in.dtype(), out.dtype(), op);
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(
in.data_shared_ptr() == nullptr ? out : in, 0);
compute_encoder.set_output_array(out, 1);
if (!contig) {
// Launch up to 3D grid of threads
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t rest = out.size() / (dim0 * dim1);
compute_encoder.set_vector_bytes(shape, 2);
compute_encoder.set_vector_bytes(strides, 3);
compute_encoder.set_bytes(ndim, 4);
if (thread_group_size != 1024) {
throw std::runtime_error("[Metal::unary] Must use 1024 sized block");
}
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
auto group_dims = get_block_dims(dim0, dim1, rest);
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims = large ? get_2d_grid_dims(out.shape(), out.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
void unary_op_gpu(
const std::vector<array>& inputs,
array& out,
const std::string op,
const Stream& s) {
auto& in = inputs[0];
bool contig = in.flags().contiguous;
if (contig) {
if (in.is_donatable() && in.itemsize() == out.itemsize()) {
out.move_shared_buffer(in);
} else {
out.set_data(
allocator::malloc_or_wait(in.data_size() * out.itemsize()),
in.data_size(),
in.strides(),
in.flags());
}
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
unary_op_gpu_inplace(inputs, out, op, s);
}
void unary_op_gpu(
const std::vector<array>& inputs,
array& out,
const std::string op) {
auto& s = out.primitive().stream();
unary_op_gpu(inputs, out, op, s);
}
UNARY_GPU(Abs)
UNARY_GPU(ArcCos)
UNARY_GPU(ArcCosh)
UNARY_GPU(ArcSin)
UNARY_GPU(ArcSinh)
UNARY_GPU(ArcTan)
UNARY_GPU(ArcTanh)
UNARY_GPU(Conjugate)
UNARY_GPU(Cos)
UNARY_GPU(Cosh)
UNARY_GPU(Erf)
UNARY_GPU(ErfInv)
UNARY_GPU(Exp)
UNARY_GPU(Expm1)
UNARY_GPU(Imag)
UNARY_GPU(Log1p)
UNARY_GPU(LogicalNot)
UNARY_GPU(Floor)
UNARY_GPU(Ceil)
UNARY_GPU(Negative)
UNARY_GPU(Real)
UNARY_GPU(Sigmoid)
UNARY_GPU(Sign)
UNARY_GPU(Sin)
UNARY_GPU(Sinh)
UNARY_GPU(Square)
UNARY_GPU(Sqrt)
UNARY_GPU(Tan)
UNARY_GPU(Tanh)
void Log::eval_gpu(const std::vector<array>& inputs, array& out) {
switch (base_) {
case Base::e:
unary_op_gpu(inputs, out, get_primitive_string(this));
break;
case Base::two:
unary_op_gpu(inputs, out, get_primitive_string(this));
break;
case Base::ten:
unary_op_gpu(inputs, out, get_primitive_string(this));
break;
}
}
void Round::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (issubdtype(in.dtype(), inexact)) {
unary_op_gpu(inputs, out, get_primitive_string(this));
} else {
// No-op integer types
move_or_copy(in, out);
}
}
} // namespace mlx::core