mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	 4f9b60dd53
			
		
	
	4f9b60dd53
	
	
	
		
			
			* Remove "using namespace mlx::core" in benchmarks/examples * Fix building example extension * A missing one in comment * Fix building on M chips
		
			
				
	
	
		
			55 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			55 lines
		
	
	
		
			1.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright © 2023 Apple Inc.
 | |
| 
 | |
| #include <chrono>
 | |
| #include <cmath>
 | |
| #include <iostream>
 | |
| 
 | |
| #include "mlx/mlx.h"
 | |
| #include "timer.h"
 | |
| 
 | |
| /**
 | |
|  * An example of logistic regression with MLX.
 | |
|  */
 | |
| namespace mx = mlx::core;
 | |
| 
 | |
| int main() {
 | |
|   int num_features = 100;
 | |
|   int num_examples = 1'000;
 | |
|   int num_iters = 10'000;
 | |
|   float learning_rate = 0.1;
 | |
| 
 | |
|   // True parameters
 | |
|   auto w_star = mx::random::normal({num_features});
 | |
| 
 | |
|   // The input examples
 | |
|   auto X = mx::random::normal({num_examples, num_features});
 | |
| 
 | |
|   // Labels
 | |
|   auto y = mx::matmul(X, w_star) > 0;
 | |
| 
 | |
|   // Initialize random parameters
 | |
|   mx::array w = 1e-2 * mx::random::normal({num_features});
 | |
| 
 | |
|   auto loss_fn = [&](mx::array w) {
 | |
|     auto logits = mx::matmul(X, w);
 | |
|     auto scale = (1.0f / num_examples);
 | |
|     return scale * mx::sum(mx::logaddexp(mx::array(0.0f), logits) - y * logits);
 | |
|   };
 | |
| 
 | |
|   auto grad_fn = mx::grad(loss_fn);
 | |
| 
 | |
|   auto tic = timer::time();
 | |
|   for (int it = 0; it < num_iters; ++it) {
 | |
|     auto grads = grad_fn(w);
 | |
|     w = w - learning_rate * grads;
 | |
|     mx::eval(w);
 | |
|   }
 | |
|   auto toc = timer::time();
 | |
| 
 | |
|   auto loss = loss_fn(w);
 | |
|   auto acc = mx::sum((mx::matmul(X, w) > 0) == y) / num_examples;
 | |
|   auto throughput = num_iters / timer::seconds(toc - tic);
 | |
|   std::cout << "Loss " << loss << ", Accuracy, " << acc << ", Throughput "
 | |
|             << throughput << " (it/s)." << std::endl;
 | |
| }
 |