mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	 4f9b60dd53
			
		
	
	4f9b60dd53
	
	
	
		
			
			* Remove "using namespace mlx::core" in benchmarks/examples * Fix building example extension * A missing one in comment * Fix building on M chips
		
			
				
	
	
		
			100 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			100 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright © 2023 Apple Inc.
 | |
| 
 | |
| #include <cassert>
 | |
| #include <iostream>
 | |
| 
 | |
| #include "mlx/mlx.h"
 | |
| 
 | |
| namespace mx = mlx::core;
 | |
| 
 | |
| void array_basics() {
 | |
|   // Make a scalar array:
 | |
|   mx::array x(1.0);
 | |
| 
 | |
|   // Get the value out of it:
 | |
|   auto s = x.item<float>();
 | |
|   assert(s == 1.0);
 | |
| 
 | |
|   // Scalars have a size of 1:
 | |
|   size_t size = x.size();
 | |
|   assert(size == 1);
 | |
| 
 | |
|   // Scalars have 0 dimensions:
 | |
|   int ndim = x.ndim();
 | |
|   assert(ndim == 0);
 | |
| 
 | |
|   // The shape should be an empty vector:
 | |
|   auto shape = x.shape();
 | |
|   assert(shape.empty());
 | |
| 
 | |
|   // The datatype should be float32:
 | |
|   auto dtype = x.dtype();
 | |
|   assert(dtype == mx::float32);
 | |
| 
 | |
|   // Specify the dtype when constructing the array:
 | |
|   x = mx::array(1, mx::int32);
 | |
|   assert(x.dtype() == mx::int32);
 | |
|   x.item<int>(); // OK
 | |
|   // x.item<float>();  // Undefined!
 | |
| 
 | |
|   // Make a multidimensional array:
 | |
|   x = mx::array({1.0f, 2.0f, 3.0f, 4.0f}, {2, 2});
 | |
|   // mlx is row-major by default so the first row of this array
 | |
|   // is [1.0, 2.0] and the second row is [3.0, 4.0]
 | |
| 
 | |
|   // Make an array of shape {2, 2} filled with ones:
 | |
|   auto y = mx::ones({2, 2});
 | |
| 
 | |
|   // Pointwise add x and y:
 | |
|   auto z = mx::add(x, y);
 | |
| 
 | |
|   // Same thing:
 | |
|   z = x + y;
 | |
| 
 | |
|   // mlx is lazy by default. At this point `z` only
 | |
|   // has a shape and a type but no actual data:
 | |
|   assert(z.dtype() == mx::float32);
 | |
|   assert(z.shape(0) == 2);
 | |
|   assert(z.shape(1) == 2);
 | |
| 
 | |
|   // To actually run the computation you must evaluate `z`.
 | |
|   // Under the hood, mlx records operations in a graph.
 | |
|   // The variable `z` is a node in the graph which points to its operation
 | |
|   // and inputs. When `eval` is called on an array (or arrays), the array and
 | |
|   // all of its dependencies are recursively evaluated to produce the result.
 | |
|   // Once an array is evaluated, it has data and is detached from its inputs.
 | |
|   mx::eval(z);
 | |
| 
 | |
|   // Of course the array can still be an input to other operations. You can
 | |
|   // even call eval on the array again, this will just be a no-op:
 | |
|   mx::eval(z); // no-op
 | |
| 
 | |
|   // Some functions or methods on arrays implicitly evaluate them. For example
 | |
|   // accessing a value in an array or printing the array implicitly evaluate it:
 | |
|   z = mx::ones({1});
 | |
|   z.item<float>(); // implicit evaluation
 | |
| 
 | |
|   z = mx::ones({2, 2});
 | |
|   std::cout << z << std::endl; // implicit evaluation
 | |
| }
 | |
| 
 | |
| void automatic_differentiation() {
 | |
|   auto fn = [](mx::array x) { return mx::square(x); };
 | |
| 
 | |
|   // Computing the derivative function of a function
 | |
|   auto grad_fn = mx::grad(fn);
 | |
|   // Call grad_fn on the input to get the derivative
 | |
|   auto x = mx::array(1.5);
 | |
|   auto dfdx = grad_fn(x);
 | |
|   // dfdx is 2 * x
 | |
| 
 | |
|   // Get the second derivative by composing grad with grad
 | |
|   auto d2fdx2 = mx::grad(mx::grad(fn))(x);
 | |
|   // d2fdx2 is 2
 | |
| }
 | |
| 
 | |
| int main() {
 | |
|   array_basics();
 | |
|   automatic_differentiation();
 | |
| }
 |