mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			578 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			578 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import math
 | |
| import unittest
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx_tests
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| def mlx_ref_attn(q, k, v, scale=1.0, mask=None):
 | |
|     q_dtype = q.dtype
 | |
|     q = q * mx.array(scale, q_dtype)
 | |
|     n_q_heads = q.shape[-3]
 | |
|     n_kv_heads = k.shape[-3]
 | |
|     n_repeats = n_q_heads // n_kv_heads
 | |
| 
 | |
|     B = q.shape[0]
 | |
|     L = q.shape[2]
 | |
|     kL = k.shape[2]
 | |
| 
 | |
|     if n_repeats > 1:
 | |
|         q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
 | |
|         k = mx.expand_dims(k, 2)
 | |
|         v = mx.expand_dims(v, 2)
 | |
| 
 | |
|     scores = q @ mx.swapaxes(k, -1, -2)
 | |
| 
 | |
|     if mask is not None:
 | |
| 
 | |
|         if mask == "causal":
 | |
|             q_offset = max(0, kL - L)
 | |
|             q_indices = mx.arange(q_offset, q_offset + L)
 | |
|             k_indices = mx.arange(kL)
 | |
|             mask = q_indices[:, None] >= k_indices[None]
 | |
| 
 | |
|         if n_repeats > 1 and mask.ndim >= 3:
 | |
|             if mask.shape[-3] == 1:
 | |
|                 mask = mx.expand_dims(mask, -3)
 | |
|             else:
 | |
|                 mask = mx.unflatten(mask, -3, (n_kv_heads, n_repeats))
 | |
| 
 | |
|         if mask.dtype == mx.bool_:
 | |
|             scores = mx.where(mask, scores, -np.float32(np.inf))
 | |
|         else:
 | |
|             scores += mask
 | |
| 
 | |
|     scores = mx.softmax(scores, axis=-1, precise=True)
 | |
| 
 | |
|     out = scores @ v
 | |
|     if n_repeats > 1:
 | |
|         out = mx.reshape(out, [B, n_q_heads, L, -1])
 | |
| 
 | |
|     return out
 | |
| 
 | |
| 
 | |
| def do_attention(f, q, k, v, scale, mask=None, transpose=False):
 | |
|     if transpose:
 | |
|         q_t = mx.transpose(q, (0, 2, 1, 3))
 | |
|         k_t = mx.transpose(k, (0, 2, 1, 3))
 | |
|         v_t = mx.transpose(v, (0, 2, 1, 3))
 | |
|         o_t = f(q_t, k_t, v_t, scale=scale, mask=mask)
 | |
|         return mx.transpose(o_t, (0, 2, 1, 3))
 | |
|     else:
 | |
|         return f(q, k, v, scale=scale, mask=mask)
 | |
| 
 | |
| 
 | |
| def prepare_inputs(B, qL, kL, D, qH, kH, mask, transpose, dtype):
 | |
|     np.random.seed(0)
 | |
|     np_dtype = getattr(np, dtype)
 | |
| 
 | |
|     shape_q = (B, qL, qH, D) if transpose else (B, qH, qL, D)
 | |
|     shape_kv = (B, kL, kH, D) if transpose else (B, kH, kL, D)
 | |
| 
 | |
|     scale = 1.0 / math.sqrt(D)
 | |
| 
 | |
|     q_np = np.random.normal(0.0, 0.5, shape_q).astype(np_dtype)
 | |
|     k_np = np.random.normal(0.0, 0.5, shape_kv).astype(np_dtype)
 | |
|     v_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
 | |
| 
 | |
|     q_mx = mx.array(q_np)
 | |
|     k_mx = mx.array(k_np)
 | |
|     v_mx = mx.array(v_np)
 | |
| 
 | |
|     if mask is not None:
 | |
|         if mask == "additive":
 | |
|             mask_np = np.random.normal(0.0, 0.5, (B, qH, qL, kL)).astype(np_dtype)
 | |
|             mask = mx.array(mask_np)
 | |
|         elif mask == "bool":
 | |
|             mask_np = np.random.uniform(0.0, 1.0, (B, qH, qL, kL)) < 0.5
 | |
|             mask = mx.array(mask_np)
 | |
| 
 | |
|     return q_mx, k_mx, v_mx, scale, mask
 | |
| 
 | |
| 
 | |
| # SDPA for MHA (n_heads == n_kv_heads)
 | |
| def mlx_primitives_sdpa(q, k, v, scale, mask=None):
 | |
|     p = (q * scale) @ k.transpose(0, 1, 3, 2)
 | |
|     if mask is not None:
 | |
|         if mask == "causal":
 | |
|             q_offset = max(0, k.shape[2] - q.shape[2])
 | |
|             q_indices = mx.arange(q_offset, q_offset + q.shape[2])
 | |
|             k_indices = mx.arange(k.shape[2])
 | |
|             mask = q_indices[:, None] >= k_indices[None]
 | |
|             p = mx.where(mask, p, mx.finfo(mx.float32).min)
 | |
|         elif mask.dtype == mx.bool_:
 | |
|             p = mx.where(mask, p, mx.finfo(mx.float32).min)
 | |
|         else:
 | |
|             p += mask
 | |
|     scores = mx.softmax(p.astype(mx.float32), axis=-1).astype(p.dtype)
 | |
|     return scores @ v
 | |
| 
 | |
| 
 | |
| # SDPA for GQA (n_heads > n_kv_heads, n_kv_heads > 1, n_heads % n_kv_heads == 0)
 | |
| def mlx_primitives_sdpa_with_gqa(q, k, v, scale, mask=None):
 | |
|     n_repeats = q.shape[1] // k.shape[1]
 | |
| 
 | |
|     # borrowing kv cache tiling from mlx-examples/llms/mistral/mistral.py
 | |
|     n_heads = q.shape[1]
 | |
|     B = q.shape[0]
 | |
|     L = k.shape[2]
 | |
| 
 | |
|     def repeat(a):
 | |
|         a = mx.concatenate([mx.expand_dims(a, 2)] * n_repeats, axis=2)
 | |
|         return a.reshape([B, n_heads, L, -1])
 | |
| 
 | |
|     k, v = map(repeat, (k, v))
 | |
| 
 | |
|     return mlx_primitives_sdpa(q, k, v, scale, mask=mask)
 | |
| 
 | |
| 
 | |
| class TestFastSelfAttentionSDPA(mlx_tests.MLXTestCase):
 | |
|     def test_fast_sdpa(self):
 | |
|         # Not yet supported:
 | |
|         # * K pre-transposed in kernel, V pre-transposed in kernel
 | |
|         np.random.seed(0)
 | |
|         R = 20
 | |
|         L = R
 | |
|         Dk = 64
 | |
|         H = 3
 | |
|         scale = float(1.0 / np.sqrt(Dk))
 | |
|         q_npy = np.random.normal(0.0, 1.0, (1, H, R, Dk)).astype(np.float32)
 | |
|         k_npy = np.random.normal(0.0, 1.0, (1, H, L, Dk)).astype(np.float32)
 | |
|         v_npy = np.random.normal(0.0, 1.0, (1, H, L, Dk)).astype(np.float32)
 | |
| 
 | |
|         q_mlx = mx.array(q_npy)
 | |
|         k_mlx = mx.array(k_npy)
 | |
|         v_mlx = mx.array(v_npy)
 | |
| 
 | |
|         reference = mlx_primitives_sdpa(q_mlx, k_mlx, v_mlx, scale)
 | |
| 
 | |
|         o_mlx = mx.fast.scaled_dot_product_attention(
 | |
|             q_mlx, k_mlx, v_mlx, scale=scale, mask=None
 | |
|         )
 | |
| 
 | |
|         self.assertListEqual(list(reference.shape), list(o_mlx.shape))
 | |
|         self.assertTrue(mx.allclose(o_mlx, reference, atol=1e-4))
 | |
| 
 | |
|         dtypes = [np.float32]
 | |
| 
 | |
|         Dk = 64
 | |
| 
 | |
|         if self.is_apple_silicon:
 | |
|             dtypes.append(np.half)
 | |
| 
 | |
|         for SEQUENCE_LENGTH in [63, 129, 400]:
 | |
|             for DTYPE in dtypes:
 | |
|                 B = 2
 | |
|                 H = 24
 | |
|                 n_kv_heads = H
 | |
|                 q_npy = np.random.normal(0.0, 1.0, (B, H, SEQUENCE_LENGTH, Dk)).astype(
 | |
|                     DTYPE
 | |
|                 )
 | |
|                 k_npy = np.random.normal(
 | |
|                     0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
 | |
|                 ).astype(DTYPE)
 | |
|                 v_npy = np.random.normal(
 | |
|                     0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
 | |
|                 ).astype(DTYPE)
 | |
| 
 | |
|                 q_mlx = mx.array(q_npy)
 | |
|                 k_mlx = mx.array(k_npy)
 | |
|                 v_mlx = mx.array(v_npy)
 | |
| 
 | |
|                 reference = mlx_primitives_sdpa_with_gqa(q_mlx, k_mlx, v_mlx, scale)
 | |
|                 o_mlx = mx.fast.scaled_dot_product_attention(
 | |
|                     q_mlx,
 | |
|                     k_mlx,
 | |
|                     v_mlx,
 | |
|                     scale=scale,
 | |
|                 )
 | |
| 
 | |
|                 self.assertListEqual(list(reference.shape), list(o_mlx.shape))
 | |
|                 rtol = 1e-3
 | |
|                 atol = 1e-2
 | |
| 
 | |
|                 if SEQUENCE_LENGTH > 500:
 | |
|                     rtol = 1e-2
 | |
| 
 | |
|                 if DTYPE == np.half:
 | |
|                     rtol = 1e-2
 | |
| 
 | |
|                 self.assertTrue(mx.allclose(o_mlx, reference, rtol=rtol, atol=atol))
 | |
| 
 | |
| 
 | |
| class TestFastSDPA(mlx_tests.MLXTestCase):
 | |
|     def test_fast_sdpa(self):
 | |
|         # Not yet supported:
 | |
|         # * K pre-transposed in kernel, V pre-transposed in kernel
 | |
|         np.random.seed(0)
 | |
|         L = 43
 | |
|         R = 1
 | |
|         Dk = 128
 | |
|         scale = float(1.0 / np.sqrt(128.0))
 | |
|         q_npy = np.random.normal(0.0, 1.0, (1, 32, R, Dk)).astype(np.float32)
 | |
|         k_npy = np.random.normal(0.0, 1.0, (1, 32, L, Dk)).astype(np.float32)
 | |
|         v_npy = np.random.normal(0.0, 1.0, (1, 32, L, Dk)).astype(np.float32)
 | |
| 
 | |
|         q_mlx = mx.array(q_npy)
 | |
|         k_mlx = mx.array(k_npy)
 | |
|         v_mlx = mx.array(v_npy)
 | |
| 
 | |
|         reference = mlx_primitives_sdpa(q_mlx, k_mlx, v_mlx, scale)
 | |
| 
 | |
|         o_mlx = mx.fast.scaled_dot_product_attention(
 | |
|             q_mlx, k_mlx, v_mlx, scale=scale, mask=None
 | |
|         )
 | |
| 
 | |
|         self.assertListEqual(list(reference.shape), list(o_mlx.shape))
 | |
|         self.assertTrue(mx.allclose(o_mlx, reference, atol=1e-4))
 | |
| 
 | |
|         B = 1
 | |
|         H = 32
 | |
|         dtypes = [np.float32]
 | |
|         if self.is_apple_silicon:
 | |
|             dtypes.append(np.half)
 | |
| 
 | |
|         for SEQUENCE_LENGTH in [1, 7, 9, 32, 63, 67, 129, 400, 2000]:
 | |
|             for DO_GQA in [0, 1]:
 | |
|                 for DTYPE in dtypes:
 | |
|                     n_kv_heads = 8 if DO_GQA else 32
 | |
|                     q_npy = np.random.normal(0.0, 1.0, (B, H, R, Dk)).astype(DTYPE)
 | |
|                     k_npy = np.random.normal(
 | |
|                         0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
 | |
|                     ).astype(DTYPE)
 | |
|                     v_npy = np.random.normal(
 | |
|                         0.0, 1.0, (B, n_kv_heads, SEQUENCE_LENGTH, Dk)
 | |
|                     ).astype(DTYPE)
 | |
| 
 | |
|                     q_mlx = mx.array(q_npy)
 | |
|                     k_mlx = mx.array(k_npy)
 | |
|                     v_mlx = mx.array(v_npy)
 | |
| 
 | |
|                     reference = mlx_primitives_sdpa_with_gqa(q_mlx, k_mlx, v_mlx, scale)
 | |
|                     o_mlx = mx.fast.scaled_dot_product_attention(
 | |
|                         q_mlx, k_mlx, v_mlx, scale=scale
 | |
|                     )
 | |
| 
 | |
|                     self.assertListEqual(list(reference.shape), list(o_mlx.shape))
 | |
|                     rtol = 1e-5
 | |
|                     atol = 1e-1
 | |
| 
 | |
|                     if SEQUENCE_LENGTH > 500:
 | |
|                         rtol = 1e-2
 | |
| 
 | |
|                     if DTYPE == np.half:
 | |
|                         rtol = 1e-2
 | |
| 
 | |
|                     self.assertTrue(mx.allclose(o_mlx, reference, rtol=rtol, atol=atol))
 | |
|         q = mx.random.normal(shape=(1, 32, 1, Dk))
 | |
|         k = mx.random.normal(shape=(1, 32, 32, Dk))
 | |
|         v = mx.random.normal(shape=(1, 32, 128, Dk))
 | |
| 
 | |
|         atol = 1e-6
 | |
|         y = mlx_primitives_sdpa(q, k, v[:, :, :32], scale)
 | |
|         y_hat = mx.fast.scaled_dot_product_attention(q, k, v[:, :, :32], scale=scale)
 | |
|         self.assertTrue(mx.allclose(y, y_hat, atol=atol))
 | |
| 
 | |
|         # Test with per-example mask
 | |
|         q = mx.random.normal(shape=(2, 8, 4, 32))
 | |
|         k = mx.random.normal(shape=(2, 2, 8, 32))
 | |
|         v = mx.random.normal(shape=(2, 2, 8, 32))
 | |
|         mask = 10 * mx.random.normal(shape=(2, 1, 4, 8))
 | |
|         y = mlx_primitives_sdpa_with_gqa(q, k, v, scale, mask=mask)
 | |
|         y_hat = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
 | |
|         self.assertTrue(mx.allclose(y, y_hat, atol=atol))
 | |
| 
 | |
|         # Test with boolean causal mask
 | |
|         indices = mx.arange(8)
 | |
|         bool_mask = indices[:, None] >= indices[None]
 | |
|         additive_mask = (~bool_mask).astype(mx.float32) * mx.finfo(mx.float32).min
 | |
|         x = mx.random.normal(shape=(1, 2, 8, 32))
 | |
|         y = mlx_primitives_sdpa_with_gqa(x, x, x, scale, mask=additive_mask)
 | |
|         y_hat = mx.fast.scaled_dot_product_attention(
 | |
|             x, x, x, scale=scale, mask=bool_mask
 | |
|         )
 | |
|         self.assertTrue(mx.allclose(y, y_hat, atol=atol))
 | |
| 
 | |
|     def test_fast_sdpa_vector_kv_transposed_head_seq(self):
 | |
|         D = 64
 | |
|         Nq = 4
 | |
|         Nkv = 1
 | |
|         scale = 1.0
 | |
|         mx.random.seed(0)
 | |
|         q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
 | |
| 
 | |
|         lengths = [43, 4096]
 | |
|         for L in lengths:
 | |
|             k = 5e-1 * mx.random.normal(shape=(1, L, Nkv, D))
 | |
|             v = 5e-1 * mx.random.normal(shape=(1, L, Nkv, D))
 | |
|             k = k.swapaxes(1, 2)
 | |
|             v = v.swapaxes(1, 2)
 | |
|             masks = [
 | |
|                 mx.array(True),
 | |
|                 mx.array([True] * (L - 10) + [False] * 10),
 | |
|                 mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
 | |
|                 mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
 | |
|             ]
 | |
| 
 | |
|             for m in masks:
 | |
|                 ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
 | |
|                 out = mx.fast.scaled_dot_product_attention(
 | |
|                     q,
 | |
|                     k,
 | |
|                     v,
 | |
|                     scale=scale,
 | |
|                     mask=m,
 | |
|                 )
 | |
|                 self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
 | |
| 
 | |
|     def test_fast_sdpa_vector(self):
 | |
|         D = 64
 | |
|         L = 43
 | |
|         Nq = 4
 | |
|         Nkv = 1
 | |
|         scale = 1.0
 | |
|         mx.random.seed(0)
 | |
|         q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
 | |
|         k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
|         v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.fast.scaled_dot_product_attention(
 | |
|                 q,
 | |
|                 k,
 | |
|                 v,
 | |
|                 scale=scale,
 | |
|                 mask=mx.full((Nq, 2, L), False),
 | |
|             )
 | |
| 
 | |
|         masks = [
 | |
|             mx.array(True),
 | |
|             mx.array([True] * (L - 10) + [False] * 10),
 | |
|             mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
 | |
|             mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
 | |
|             "causal",
 | |
|         ]
 | |
|         for m in masks:
 | |
|             ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
 | |
|             out = mx.fast.scaled_dot_product_attention(
 | |
|                 q,
 | |
|                 k,
 | |
|                 v,
 | |
|                 scale=scale,
 | |
|                 mask=m,
 | |
|             )
 | |
|             self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
 | |
| 
 | |
|         L = 4096
 | |
|         scale = 1.0
 | |
|         mx.random.seed(0)
 | |
|         q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
 | |
|         k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
|         v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
| 
 | |
|         masks = [
 | |
|             mx.array(True),
 | |
|             mx.array([True] * (L - 10) + [False] * 10),
 | |
|             mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
 | |
|             mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
 | |
|             "causal",
 | |
|         ]
 | |
|         for m in masks:
 | |
|             ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
 | |
|             out = mx.fast.scaled_dot_product_attention(
 | |
|                 q,
 | |
|                 k,
 | |
|                 v,
 | |
|                 scale=scale,
 | |
|                 mask=m,
 | |
|             )
 | |
|             self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
 | |
| 
 | |
|     def test_fast_sdpa_few_query(self):
 | |
|         D = 64
 | |
|         L = 43
 | |
|         Lq = 4
 | |
|         Nq = 8
 | |
|         Nkv = 1
 | |
|         scale = 1.0
 | |
|         mx.random.seed(0)
 | |
|         q = 5e-1 * mx.random.normal(shape=(1, Lq, Nq, D))
 | |
|         q = q.swapaxes(1, 2)
 | |
|         k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
|         v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
| 
 | |
|         masks = [
 | |
|             mx.array(True),
 | |
|             mx.array([True] * (L - 10) + [False] * 10),
 | |
|             mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
 | |
|             mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
 | |
|             "causal",
 | |
|         ]
 | |
|         for m in masks:
 | |
|             ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
 | |
|             out = mx.fast.scaled_dot_product_attention(
 | |
|                 q,
 | |
|                 k,
 | |
|                 v,
 | |
|                 scale=scale,
 | |
|                 mask=m,
 | |
|             )
 | |
|             self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
 | |
| 
 | |
|         L = 4096
 | |
|         scale = 1.0
 | |
|         mx.random.seed(0)
 | |
|         q = 5e-1 * mx.random.normal(shape=(1, Nq, Lq, D))
 | |
|         k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
|         v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
| 
 | |
|         masks = [
 | |
|             mx.array(True),
 | |
|             mx.array([True] * (L - 10) + [False] * 10),
 | |
|             mx.random.uniform(shape=(Nq, 1, L)) > 0.2,
 | |
|             mx.random.uniform(shape=(L, 1, Nq)).T > 0.2,
 | |
|             "causal",
 | |
|         ]
 | |
|         for m in masks:
 | |
|             ref = mlx_primitives_sdpa(q, k, v, scale, mask=m)
 | |
|             out = mx.fast.scaled_dot_product_attention(
 | |
|                 q,
 | |
|                 k,
 | |
|                 v,
 | |
|                 scale=scale,
 | |
|                 mask=m,
 | |
|             )
 | |
|             self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
 | |
| 
 | |
|     @unittest.skip("Different head and value dims is not enabled")
 | |
|     def test_fast_sdpa_vector_value_dims(self):
 | |
|         D = 192
 | |
|         V = 128
 | |
|         Nq = 4
 | |
|         Nkv = 1
 | |
|         scale = 1.0
 | |
|         mx.random.seed(0)
 | |
| 
 | |
|         for L in [43, 128, 237, 8192]:
 | |
|             q = 5e-1 * mx.random.normal(shape=(1, Nq, 1, D))
 | |
|             k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
|             v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, V))
 | |
|             ref = mlx_primitives_sdpa(q, k, v, scale)
 | |
|             out = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale)
 | |
|             self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
 | |
| 
 | |
| 
 | |
| class TestSDPA(mlx_tests.MLXTestCase):
 | |
|     @property
 | |
|     def dtypes(self):
 | |
|         return ["float32", "float16"] if mx.metal.is_available() else ["float32"]
 | |
| 
 | |
|     def test_sdpa(self):
 | |
|         if not mx.metal.is_available():
 | |
|             return
 | |
| 
 | |
|         # fmt: off
 | |
|         shapes_64 = (
 | |
|             # (  B,   qsl,   ksl, head_dim, n_qh, n_kvh)
 | |
|             (  1,   128,   128,       64,   32,    32),
 | |
|             (  1,    64,   128,       64,   32,    32),
 | |
|             (  1,    65,   128,       64,   32,     8),
 | |
|             (  1,    64,   127,       64,   32,     8),
 | |
|             (  1,    65,   127,       64,   32,     8),
 | |
|             (  1,   127,    65,       64,   32,     8),
 | |
|         )
 | |
| 
 | |
|         shapes_128 = (
 | |
|             # (  B,   qsl,   ksl, head_dim, n_qh, n_kvh)
 | |
|             (  1,   128,   128,      128,   32,     8),
 | |
|             (  1,    64,   128,      128,   32,     8),
 | |
|             (  1,    65,   127,      128,   32,     8),
 | |
|             (  1,   127,    65,      128,   32,     8),
 | |
|         )
 | |
|         # fmt: on
 | |
| 
 | |
|         shapes = shapes_64 + shapes_128
 | |
|         masks = [None, "additive", "bool", "causal"]
 | |
|         transposes = (False, True)
 | |
| 
 | |
|         for dtype in self.dtypes:
 | |
|             for t in transposes:
 | |
|                 for mask_str in masks:
 | |
|                     for B, qL, kL, D, qH, kH in shapes:
 | |
|                         with self.subTest(
 | |
|                             B=B,
 | |
|                             qsl=qL,
 | |
|                             ksl=kL,
 | |
|                             head_dim=D,
 | |
|                             n_q_heads=qH,
 | |
|                             n_kv_heads=kH,
 | |
|                             mask=mask_str,
 | |
|                             transpose=t,
 | |
|                             dtype=dtype,
 | |
|                         ):
 | |
| 
 | |
|                             np.random.seed(0)
 | |
|                             q_mx, k_mx, v_mx, scale, mask = prepare_inputs(
 | |
|                                 B, qL, kL, D, qH, kH, mask_str, t, dtype
 | |
|                             )
 | |
| 
 | |
|                             out_ref = do_attention(
 | |
|                                 mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, t
 | |
|                             )
 | |
| 
 | |
|                             out_fst = do_attention(
 | |
|                                 mx.fast.scaled_dot_product_attention,
 | |
|                                 q_mx,
 | |
|                                 k_mx,
 | |
|                                 v_mx,
 | |
|                                 scale,
 | |
|                                 mask,
 | |
|                                 t,
 | |
|                             )
 | |
| 
 | |
|                             atol = 2e-5 if dtype == "float32" else 3e-4
 | |
| 
 | |
|                             self.assertListEqual(
 | |
|                                 list(out_ref.shape), list(out_fst.shape)
 | |
|                             )
 | |
| 
 | |
|                             diff = mx.abs(out_fst - out_ref) - atol * mx.abs(out_ref)
 | |
|                             self.assertLessEqual(mx.max(diff).item(), atol)
 | |
| 
 | |
|     def test_sdpa_broadcast_mask(self):
 | |
|         mask = mx.array(True)
 | |
|         D = 64
 | |
|         Nq = 4
 | |
|         Nkv = 1
 | |
|         scale = 1.0
 | |
|         L = 256
 | |
| 
 | |
|         mx.random.seed(0)
 | |
|         q = 5e-1 * mx.random.normal(shape=(1, Nq, L, D))
 | |
|         k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
|         v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
|         ref = mlx_primitives_sdpa(q, k, v, scale, mask=mask)
 | |
|         out = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
 | |
|         self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
 | |
| 
 | |
|     def test_sdpa_prommote_mask(self):
 | |
|         mask = mx.array(2.0, mx.bfloat16)
 | |
|         D = 64
 | |
|         Nq = 4
 | |
|         Nkv = 1
 | |
|         scale = 1.0
 | |
|         L = 256
 | |
| 
 | |
|         mx.random.seed(0)
 | |
|         q = 5e-1 * mx.random.normal(shape=(1, Nq, L, D))
 | |
|         k = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
|         v = 5e-1 * mx.random.normal(shape=(1, Nkv, L, D))
 | |
|         ref = mlx_primitives_sdpa(q, k, v, scale, mask=mask)
 | |
|         out = mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
 | |
|         self.assertTrue(mx.allclose(ref, out, atol=1e-4, rtol=1e-4))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     unittest.main(failfast=True)
 | 
