mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	 ebd7135b50
			
		
	
	ebd7135b50
	
	
	
		
			
			* Improve stability of BCE loss calculation * Standardize comment * Apply formatting with black via pre-commit * Add usage recommendation to docstring * Update python/mlx/nn/losses.py --------- Co-authored-by: Awni Hannun <awni.hannun@gmail.com>
		
			
				
	
	
		
			418 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			418 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023 Apple Inc.
 | |
| 
 | |
| import unittest
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx.nn as nn
 | |
| import mlx_tests
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| class TestLosses(mlx_tests.MLXTestCase):
 | |
|     def test_cross_entropy(self):
 | |
|         # No weights, no label smoothing
 | |
|         logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
 | |
|         indices = mx.array([0, 1])
 | |
|         expected = mx.array([0.0, 0.0])
 | |
|         loss = nn.losses.cross_entropy(logits, indices, reduction="none")
 | |
|         self.assertTrue(mx.allclose(loss, expected))
 | |
| 
 | |
|         probs = mx.array([[1.0, 0.0], [0.0, 1.0]])
 | |
|         loss = nn.losses.cross_entropy(logits, probs, reduction="none")
 | |
|         self.assertTrue(mx.isnan(loss).all())  # produce NaNs, like PyTorch
 | |
| 
 | |
|         # With weights, no label smoothing
 | |
|         logits = mx.array([[2.0, -1.0], [-1.0, 2.0]])
 | |
|         indices = mx.array([0, 1])
 | |
|         weights = mx.array([1.0, 2.0])
 | |
|         expected = mx.array([0.04858735, 0.0971747])
 | |
|         loss = nn.losses.cross_entropy(
 | |
|             logits, indices, weights=weights, reduction="none"
 | |
|         )
 | |
|         self.assertTrue(mx.allclose(loss, expected))
 | |
| 
 | |
|         probs = mx.array([[1.0, 0.0], [0.0, 1.0]])
 | |
|         loss = nn.losses.cross_entropy(logits, probs, weights=weights, reduction="none")
 | |
|         self.assertTrue(mx.allclose(loss, expected))
 | |
| 
 | |
|         # No weights, with label smoothing
 | |
|         logits = mx.array([[2.0, -1.0], [-1.0, 2.0]])
 | |
|         indices = mx.array([0, 1])
 | |
|         expected = mx.array([0.498587, 0.498587])
 | |
|         loss = nn.losses.cross_entropy(
 | |
|             logits, indices, label_smoothing=0.3, reduction="none"
 | |
|         )
 | |
|         self.assertTrue(mx.allclose(loss, expected))
 | |
| 
 | |
|         probs = mx.array([[1.0, 0.0], [0.0, 1.0]])
 | |
|         loss = nn.losses.cross_entropy(
 | |
|             logits, probs, label_smoothing=0.3, reduction="none"
 | |
|         )
 | |
|         self.assertTrue(mx.allclose(loss, expected))
 | |
| 
 | |
|         # With weights and label smoothing
 | |
|         logits = mx.array([[2.0, -1.0], [-1.0, 2.0]])
 | |
|         indices = mx.array([0, 1])
 | |
|         weights = mx.array([1.0, 2.0])
 | |
|         expected = mx.array([0.49858734, 0.9971747])
 | |
|         loss = nn.losses.cross_entropy(
 | |
|             logits, indices, weights=weights, label_smoothing=0.3, reduction="none"
 | |
|         )
 | |
|         self.assertTrue(mx.allclose(loss, expected))
 | |
| 
 | |
|         probs = mx.array([[1.0, 0.0], [0.0, 1.0]])
 | |
|         loss = nn.losses.cross_entropy(
 | |
|             logits, probs, weights=weights, label_smoothing=0.3, reduction="none"
 | |
|         )
 | |
|         self.assertTrue(mx.allclose(loss, expected))
 | |
| 
 | |
|     def test_binary_cross_entropy(self):
 | |
|         def _test_logits_as_inputs():
 | |
|             logits = mx.array([0.105361, 0.223144, 1.20397, 0.916291])
 | |
|             targets = mx.array([0, 0, 1, 1])
 | |
| 
 | |
|             # Test with reduction 'none'
 | |
|             losses_none = nn.losses.binary_cross_entropy(
 | |
|                 logits, targets, reduction="none"
 | |
|             )
 | |
|             expected_none = mx.array([0.747215, 0.810930, 0.262365, 0.336472])
 | |
|             self.assertTrue(mx.allclose(losses_none, expected_none))
 | |
| 
 | |
|             # Test with reduction 'mean'
 | |
|             losses_mean = nn.losses.binary_cross_entropy(
 | |
|                 logits, targets, reduction="mean"
 | |
|             )
 | |
|             expected_mean = mx.mean(expected_none)
 | |
|             self.assertEqual(losses_mean, expected_mean)
 | |
| 
 | |
|             # Test with reduction 'sum'
 | |
|             losses_sum = nn.losses.binary_cross_entropy(
 | |
|                 logits, targets, reduction="sum"
 | |
|             )
 | |
|             expected_sum = mx.sum(expected_none)
 | |
|             self.assertEqual(losses_sum, expected_sum)
 | |
| 
 | |
|             # With weights, no label smoothing
 | |
|             weights = mx.array([1.0, 2.0, 1.0, 2.0])
 | |
|             expected = mx.array([0.747215, 1.62186, 0.262365, 0.672944])
 | |
|             loss = nn.losses.binary_cross_entropy(
 | |
|                 logits, targets, weights=weights, reduction="none"
 | |
|             )
 | |
|             self.assertTrue(mx.allclose(loss, expected))
 | |
| 
 | |
|         def _test_probs_as_inputs():
 | |
|             probs = mx.array([0.5, 0.6, 0.7, 0.8])
 | |
|             targets = mx.array([0, 0, 1, 1])
 | |
| 
 | |
|             # Test with reduction 'none'
 | |
|             losses_none = nn.losses.binary_cross_entropy(
 | |
|                 probs, targets, with_logits=False, reduction="none"
 | |
|             )
 | |
|             expected_none = mx.array([0.693147, 0.916291, 0.356675, 0.223144])
 | |
|             self.assertTrue(mx.allclose(losses_none, expected_none))
 | |
| 
 | |
|             # Test with reduction 'mean'
 | |
|             losses_mean = nn.losses.binary_cross_entropy(
 | |
|                 probs, targets, with_logits=False, reduction="mean"
 | |
|             )
 | |
|             expected_mean = mx.mean(expected_none)
 | |
|             self.assertTrue(mx.allclose(losses_mean, expected_mean))
 | |
| 
 | |
|             # Test with reduction 'sum'
 | |
|             losses_sum = nn.losses.binary_cross_entropy(
 | |
|                 probs, targets, with_logits=False, reduction="sum"
 | |
|             )
 | |
|             expected_sum = mx.sum(expected_none)
 | |
|             self.assertTrue(mx.allclose(losses_sum, expected_sum))
 | |
| 
 | |
|         def _test_tiny_probs_as_inputs():
 | |
|             TINY_PROB = 1e-59
 | |
|             probs = mx.array([0, TINY_PROB, 1 - TINY_PROB, 1])
 | |
|             targets = mx.array([0, 0, 1, 1])
 | |
| 
 | |
|             losses_none = nn.losses.binary_cross_entropy(
 | |
|                 probs, targets, with_logits=False, reduction="none"
 | |
|             )
 | |
|             expected_none = mx.array([0.0, TINY_PROB, TINY_PROB, 0.0])
 | |
|             self.assertTrue(mx.allclose(losses_none, expected_none))
 | |
| 
 | |
|             # Test with reduction 'mean'
 | |
|             losses_mean = nn.losses.binary_cross_entropy(
 | |
|                 probs, targets, with_logits=False, reduction="mean"
 | |
|             )
 | |
|             expected_mean = mx.mean(expected_none)
 | |
|             self.assertTrue(mx.allclose(losses_mean, expected_mean))
 | |
| 
 | |
|             # Test with reduction 'sum'
 | |
|             losses_sum = nn.losses.binary_cross_entropy(
 | |
|                 probs, targets, with_logits=False, reduction="sum"
 | |
|             )
 | |
|             expected_sum = mx.sum(expected_none)
 | |
|             self.assertTrue(mx.allclose(losses_sum, expected_sum))
 | |
| 
 | |
|         _test_logits_as_inputs()
 | |
|         _test_probs_as_inputs()
 | |
|         _test_tiny_probs_as_inputs()
 | |
| 
 | |
|     def test_l1_loss(self):
 | |
|         predictions = mx.array([0.5, 0.2, 0.9, 0.0])
 | |
|         targets = mx.array([0.5, 0.2, 0.9, 0.0])
 | |
| 
 | |
|         # Expected result
 | |
|         expected_none = mx.array([0, 0, 0, 0]).astype(mx.float32)
 | |
|         expected_sum = mx.sum(expected_none)
 | |
|         expected_mean = mx.mean(expected_none)
 | |
| 
 | |
|         losses = nn.losses.l1_loss(predictions, targets, reduction="none")
 | |
|         self.assertTrue(
 | |
|             mx.array_equal(losses, expected_none),
 | |
|             "Test failed for l1_loss --reduction='none'",
 | |
|         )
 | |
| 
 | |
|         losses = nn.losses.l1_loss(predictions, targets, reduction="sum")
 | |
|         self.assertTrue(mx.array_equal(losses, expected_sum))
 | |
| 
 | |
|         losses = nn.losses.l1_loss(predictions, targets, reduction="mean")
 | |
|         self.assertTrue(mx.array_equal(losses, expected_mean))
 | |
| 
 | |
|     def test_mse_loss(self):
 | |
|         predictions = mx.array([0.5, 0.2, 0.9, 0.0])
 | |
|         targets = mx.array([0.7, 0.1, 0.8, 0.2])
 | |
| 
 | |
|         expected_none = mx.array([0.04, 0.01, 0.01, 0.04])
 | |
|         expected_mean = mx.mean(expected_none)
 | |
|         expected_sum = mx.sum(expected_none)
 | |
| 
 | |
|         # Test with reduction 'none'
 | |
|         losses_none = nn.losses.mse_loss(predictions, targets, reduction="none")
 | |
|         self.assertTrue(
 | |
|             np.allclose(losses_none, expected_none, 1e-5),
 | |
|             "Test case failed for mse_loss --reduction='none'",
 | |
|         )
 | |
| 
 | |
|         # Test with reduction 'mean'
 | |
|         losses_mean = nn.losses.mse_loss(predictions, targets, reduction="mean")
 | |
|         self.assertEqual(
 | |
|             losses_mean,
 | |
|             expected_mean,
 | |
|             "Test case failed for mse_loss --reduction='mean'",
 | |
|         )
 | |
| 
 | |
|         # Test with reduction 'sum'
 | |
|         losses_sum = nn.losses.mse_loss(predictions, targets, reduction="sum")
 | |
|         self.assertEqual(
 | |
|             losses_sum, expected_sum, "Test case failed for mse_loss --reduction='sum'"
 | |
|         )
 | |
| 
 | |
|     def test_smooth_l1_loss(self):
 | |
|         predictions = mx.array([1.5, 2.5, 0.5, 3.5])
 | |
|         targets = mx.array([1.0, 2.0, 0.5, 2.5])
 | |
|         beta = 1.0
 | |
| 
 | |
|         # Expected results
 | |
|         expected_none = mx.array([0.125, 0.125, 0.0, 0.5])
 | |
|         expected_sum = mx.sum(expected_none)
 | |
|         expected_mean = mx.mean(expected_none)
 | |
| 
 | |
|         # Test with reduction 'none'
 | |
|         loss_none = nn.losses.smooth_l1_loss(
 | |
|             predictions, targets, beta, reduction="none"
 | |
|         )
 | |
|         self.assertTrue(
 | |
|             mx.array_equal(loss_none, expected_none),
 | |
|             "Test case failed for smooth_l1_loss --reduction='none'",
 | |
|         )
 | |
| 
 | |
|         # Test with reduction 'sum'
 | |
|         loss_sum = nn.losses.smooth_l1_loss(predictions, targets, beta, reduction="sum")
 | |
|         self.assertEqual(
 | |
|             loss_sum,
 | |
|             expected_sum,
 | |
|             "Test case failed for smooth_l1_loss --reduction='sum'",
 | |
|         )
 | |
| 
 | |
|         # Test with reduction 'mean'
 | |
|         loss_mean = nn.losses.smooth_l1_loss(
 | |
|             predictions, targets, beta, reduction="mean"
 | |
|         )
 | |
|         self.assertEqual(
 | |
|             loss_mean,
 | |
|             expected_mean,
 | |
|             "Test case failed for smooth_l1_loss --reduction='mean'",
 | |
|         )
 | |
| 
 | |
|     def test_nll_loss(self):
 | |
|         logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
 | |
|         targets = mx.array([0, 1])
 | |
| 
 | |
|         # Test with reduction 'none'
 | |
|         losses_none = nn.losses.nll_loss(logits, targets, reduction="none")
 | |
|         expected_none = mx.array([0.0, 0.0])
 | |
|         self.assertTrue(mx.array_equal(losses_none, expected_none))
 | |
| 
 | |
|         # Test with reduction 'mean'
 | |
|         losses_mean = nn.losses.nll_loss(logits, targets, reduction="mean")
 | |
|         expected_mean = mx.mean(expected_none)
 | |
|         self.assertEqual(losses_mean, expected_mean)
 | |
| 
 | |
|         # Test with reduction 'sum'
 | |
|         losses_sum = nn.losses.nll_loss(logits, targets, reduction="sum")
 | |
|         expected_sum = mx.sum(expected_none)
 | |
|         self.assertEqual(losses_sum, expected_sum)
 | |
| 
 | |
|     def test_gaussian_nll_loss(self):
 | |
|         inputs = mx.array([[0.1, 0.2], [0.3, 0.4]])
 | |
|         targets = mx.array([[0.2, 0.1], [0.1, 0.2]])
 | |
|         vars = mx.array([[0.1, 0.2], [0.3, 0.4]])
 | |
| 
 | |
|         # Test with reduction 'none', full=False
 | |
|         losses_none = nn.losses.gaussian_nll_loss(
 | |
|             inputs, targets, vars, reduction="none"
 | |
|         )
 | |
|         expected_none = mx.array([[-1.101293, -0.779719], [-0.535320, -0.408145]])
 | |
|         self.assertTrue(mx.allclose(losses_none, expected_none))
 | |
| 
 | |
|         # Test with reduction 'mean', full=False
 | |
|         losses_mean = nn.losses.gaussian_nll_loss(
 | |
|             inputs, targets, vars, reduction="mean"
 | |
|         )
 | |
|         expected_mean = mx.mean(expected_none)
 | |
|         self.assertTrue(mx.allclose(losses_mean, expected_mean))
 | |
| 
 | |
|         # Test with reduction 'sum', full=False
 | |
|         losses_sum = nn.losses.gaussian_nll_loss(inputs, targets, vars, reduction="sum")
 | |
|         expected_sum = mx.sum(expected_none)
 | |
|         self.assertTrue(mx.allclose(losses_sum, expected_sum))
 | |
| 
 | |
|         # Test with reduction='none', full=True
 | |
|         losses_none_full = nn.losses.gaussian_nll_loss(
 | |
|             inputs, targets, vars, full=True, reduction="none"
 | |
|         )
 | |
|         expected_none_full = mx.array([[-0.182354, 0.139220], [0.383619, 0.510793]])
 | |
|         self.assertTrue(mx.allclose(losses_none_full, expected_none_full))
 | |
| 
 | |
|         # Test with reduction='mean', full=True
 | |
|         losses_mean_full = nn.losses.gaussian_nll_loss(
 | |
|             inputs, targets, vars, full=True, reduction="mean"
 | |
|         )
 | |
|         expected_mean_full = mx.mean(expected_none_full)
 | |
|         self.assertTrue(mx.allclose(losses_mean_full, expected_mean_full))
 | |
| 
 | |
|         # Test with reduction='sum', full=True
 | |
|         losses_sum_full = nn.losses.gaussian_nll_loss(
 | |
|             inputs, targets, vars, full=True, reduction="sum"
 | |
|         )
 | |
|         expected_sum_full = mx.sum(expected_none_full)
 | |
|         self.assertTrue(mx.allclose(losses_sum_full, expected_sum_full))
 | |
| 
 | |
|     def test_kl_div_loss(self):
 | |
|         p_logits = mx.log(mx.array([[0.5, 0.5], [0.8, 0.2]]))
 | |
|         q_logits = mx.log(mx.array([[0.5, 0.5], [0.2, 0.8]]))
 | |
| 
 | |
|         # Test with reduction 'none'
 | |
|         losses_none = nn.losses.kl_div_loss(p_logits, q_logits, reduction="none")
 | |
|         expected_none = mx.array([0.0, 0.831777])
 | |
|         self.assertTrue(mx.allclose(losses_none, expected_none))
 | |
| 
 | |
|         # Test with reduction 'mean'
 | |
|         losses_mean = nn.losses.kl_div_loss(p_logits, q_logits, reduction="mean")
 | |
|         expected_mean = mx.mean(expected_none)
 | |
|         self.assertTrue(mx.allclose(losses_mean, expected_mean))
 | |
| 
 | |
|         # Test with reduction 'sum'
 | |
|         losses_sum = nn.losses.kl_div_loss(p_logits, q_logits, reduction="sum")
 | |
|         expected_sum = mx.sum(expected_none)
 | |
|         self.assertTrue(mx.allclose(losses_sum, expected_sum))
 | |
| 
 | |
|     def test_triplet_loss(self):
 | |
|         anchors = mx.array([[1, 2, 3], [1, 2, 3]])
 | |
|         positives = mx.array([[4, 5, 6], [0, -1, 2]])
 | |
|         negatives = mx.array([[7, 8, 9], [3, 2, 3]])
 | |
| 
 | |
|         # Test with reduction 'none'
 | |
|         losses_none = nn.losses.triplet_loss(
 | |
|             anchors, positives, negatives, reduction="none"
 | |
|         )
 | |
|         expected_none = mx.array([0, 2.31662])
 | |
|         self.assertTrue(mx.allclose(losses_none, expected_none))
 | |
| 
 | |
|         # Test with reduction 'mean'
 | |
|         losses_mean = nn.losses.triplet_loss(
 | |
|             anchors, positives, negatives, reduction="mean"
 | |
|         )
 | |
|         expected_mean = mx.mean(expected_none)
 | |
|         self.assertTrue(mx.allclose(losses_mean, expected_mean))
 | |
| 
 | |
|         # Test with reduction 'sum'
 | |
|         losses_sum = nn.losses.triplet_loss(
 | |
|             anchors, positives, negatives, reduction="sum"
 | |
|         )
 | |
|         expected_sum = mx.sum(expected_none)
 | |
|         self.assertTrue(mx.allclose(losses_sum, expected_sum))
 | |
| 
 | |
|     def test_hinge_loss(self):
 | |
|         inputs = mx.ones((2, 4))
 | |
|         targets = mx.zeros((2, 4))
 | |
|         loss = nn.losses.hinge_loss(inputs, targets, reduction="mean")
 | |
|         self.assertEqual(loss, 1.0)
 | |
| 
 | |
|     def test_huber_loss(self):
 | |
|         inputs = mx.ones((2, 4))
 | |
|         targets = mx.zeros((2, 4))
 | |
|         loss = nn.losses.huber_loss(inputs, targets, reduction="mean")
 | |
|         self.assertEqual(loss, 0.5)
 | |
| 
 | |
|     def test_log_cosh_loss(self):
 | |
|         inputs = mx.ones((2, 4))
 | |
|         targets = mx.zeros((2, 4))
 | |
|         loss = nn.losses.log_cosh_loss(inputs, targets, reduction="mean")
 | |
|         self.assertAlmostEqual(loss.item(), 0.433781, places=6)
 | |
| 
 | |
|     def test_cosine_similarity_loss(self):
 | |
|         embeddings1 = mx.array([[0.5, 0.5, 0.2, 0.9], [0.1, 0.3, 0.5, 0.5]])
 | |
|         embeddings2 = mx.array([[0.6, 0.4, 0.3, 0.8], [0.2, 0.5, 0.6, 0.4]])
 | |
| 
 | |
|         # Test with reduction 'none'
 | |
|         losses_none = nn.losses.cosine_similarity_loss(
 | |
|             embeddings1, embeddings2, reduction="none"
 | |
|         )
 | |
|         expected_none = mx.array([0.985344, 0.961074])
 | |
|         self.assertTrue(mx.allclose(losses_none, expected_none))
 | |
| 
 | |
|         # Test with reduction 'mean'
 | |
|         losses_mean = nn.losses.cosine_similarity_loss(
 | |
|             embeddings1, embeddings2, reduction="mean"
 | |
|         )
 | |
|         expected_mean = mx.mean(expected_none)
 | |
|         self.assertTrue(mx.allclose(losses_mean, expected_mean))
 | |
| 
 | |
|         # Test with reduction 'sum'
 | |
|         losses_sum = nn.losses.cosine_similarity_loss(
 | |
|             embeddings1, embeddings2, reduction="sum"
 | |
|         )
 | |
|         expected_sum = mx.sum(expected_none)
 | |
|         self.assertTrue(mx.allclose(losses_sum, expected_sum))
 | |
| 
 | |
|     def test_margin_ranking_loss(self):
 | |
|         inputs1 = mx.array([-0.573409, -0.765166, -0.0638])
 | |
|         inputs2 = mx.array([0.75596, 0.225763, 0.256995])
 | |
|         targets = mx.array([1, 1, -1])
 | |
| 
 | |
|         # Test with no margin
 | |
|         losses = nn.losses.margin_ranking_loss(
 | |
|             inputs1, inputs2, targets, reduction="none"
 | |
|         )
 | |
|         expected = mx.array([1.329369, 0.990929, 0.0])
 | |
|         self.assertTrue(mx.allclose(losses, expected))
 | |
| 
 | |
|         # Test with margin
 | |
|         losses = nn.losses.margin_ranking_loss(
 | |
|             inputs1, inputs2, targets, margin=0.5, reduction="none"
 | |
|         )
 | |
|         expected = mx.array([1.829369, 1.490929, 0.179205])
 | |
|         self.assertTrue(mx.allclose(losses, expected))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     unittest.main()
 |