mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
199 lines
5.4 KiB
Plaintext
199 lines
5.4 KiB
Plaintext
// Copyright © 2025 Apple Inc.
|
|
|
|
#include "mlx/backend/cuda/device.h"
|
|
#include "mlx/backend/cuda/iterators/strided_iterator.cuh"
|
|
#include "mlx/backend/cuda/kernel_utils.cuh"
|
|
#include "mlx/dtype_utils.h"
|
|
#include "mlx/primitives.h"
|
|
|
|
#include <cooperative_groups.h>
|
|
#include <nvtx3/nvtx3.hpp>
|
|
#include <cub/block/block_load.cuh>
|
|
#include <cub/block/block_reduce.cuh>
|
|
|
|
#include <cassert>
|
|
|
|
namespace mlx::core {
|
|
|
|
namespace cu {
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
template <typename U>
|
|
struct IndexValPair {
|
|
uint32_t index;
|
|
U val;
|
|
};
|
|
|
|
template <typename U>
|
|
struct ArgMin {
|
|
static constexpr U init = Limits<U>::max;
|
|
|
|
__device__ IndexValPair<U> operator()(
|
|
const IndexValPair<U>& best,
|
|
const IndexValPair<U>& current) {
|
|
if (best.val > current.val ||
|
|
(best.val == current.val && best.index > current.index)) {
|
|
return current;
|
|
} else {
|
|
return best;
|
|
}
|
|
}
|
|
|
|
template <int N>
|
|
__device__ IndexValPair<U>
|
|
reduce_many(IndexValPair<U> best, U (&vals)[N], uint32_t offset) {
|
|
for (int i = 0; i < N; i++) {
|
|
if (vals[i] < best.val) {
|
|
best.val = vals[i];
|
|
best.index = offset + i;
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
};
|
|
|
|
template <typename U>
|
|
struct ArgMax {
|
|
static constexpr U init = Limits<U>::min;
|
|
|
|
__device__ IndexValPair<U> operator()(
|
|
const IndexValPair<U>& best,
|
|
const IndexValPair<U>& current) {
|
|
if (best.val < current.val ||
|
|
(best.val == current.val && best.index > current.index)) {
|
|
return current;
|
|
} else {
|
|
return best;
|
|
}
|
|
}
|
|
|
|
template <int N>
|
|
__device__ IndexValPair<U>
|
|
reduce_many(IndexValPair<U> best, U (&vals)[N], uint32_t offset) {
|
|
for (int i = 0; i < N; i++) {
|
|
if (vals[i] > best.val) {
|
|
best.val = vals[i];
|
|
best.index = offset + i;
|
|
}
|
|
}
|
|
return best;
|
|
}
|
|
};
|
|
|
|
template <typename U>
|
|
inline __device__ IndexValPair<U> warp_shuffle_down(
|
|
const cg::thread_block_tile<WARP_SIZE>& g,
|
|
const IndexValPair<U>& data,
|
|
int delta) {
|
|
return {g.shfl_down(data.index, delta), g.shfl_down(data.val, delta)};
|
|
}
|
|
|
|
template <typename T, typename Op, int BLOCK_DIM, int N_READS = 4>
|
|
__global__ void arg_reduce_general(
|
|
const T* in,
|
|
uint32_t* out,
|
|
const __grid_constant__ Shape shape,
|
|
const __grid_constant__ Strides in_strides,
|
|
const __grid_constant__ Strides out_strides,
|
|
size_t ndim,
|
|
int64_t axis_stride,
|
|
size_t axis_size) {
|
|
// Shapes and strides *do not* contain the reduction axis. The reduction size
|
|
// and stride are provided in axis_stride and axis_size.
|
|
//
|
|
// Note: in shape == out shape with this convention.
|
|
Op op;
|
|
|
|
// Compute the input/output index. There is one beginning and one output for
|
|
// the whole block.
|
|
auto elem = cg::this_grid().block_rank();
|
|
auto in_idx = elem_to_loc(elem, shape.data(), in_strides.data(), ndim);
|
|
auto out_idx = elem_to_loc(elem, shape.data(), out_strides.data(), ndim);
|
|
|
|
IndexValPair<T> best{0, Op::init};
|
|
|
|
auto block = cg::this_thread_block();
|
|
for (size_t r = 0; r < cuda::ceil_div(axis_size, BLOCK_DIM * N_READS); r++) {
|
|
T vals[N_READS];
|
|
auto index = r * BLOCK_DIM + block.thread_index().z;
|
|
cub::LoadDirectBlocked(
|
|
index,
|
|
strided_iterator(in + in_idx, axis_stride),
|
|
vals,
|
|
axis_size,
|
|
Op::init);
|
|
best = op.reduce_many(best, vals, index * N_READS);
|
|
}
|
|
|
|
typedef cub::BlockReduce<IndexValPair<T>, BLOCK_DIM> BlockReduceT;
|
|
__shared__ typename BlockReduceT::TempStorage temp;
|
|
|
|
best = BlockReduceT(temp).Reduce(best, op);
|
|
|
|
if (block.thread_rank() == 0) {
|
|
out[out_idx] = best.index;
|
|
}
|
|
}
|
|
|
|
} // namespace cu
|
|
|
|
void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
nvtx3::scoped_range r("ArgReduce::eval_gpu");
|
|
assert(inputs.size() == 1);
|
|
auto& in = inputs[0];
|
|
out.set_data(allocator::malloc(out.nbytes()));
|
|
auto& s = stream();
|
|
|
|
// Prepare the shapes, strides and axis arguments.
|
|
auto in_strides = in.strides();
|
|
auto shape = in.shape();
|
|
auto out_strides = out.strides();
|
|
auto axis_stride = in_strides[axis_];
|
|
size_t axis_size = shape[axis_];
|
|
if (out_strides.size() == in_strides.size()) {
|
|
out_strides.erase(out_strides.begin() + axis_);
|
|
}
|
|
in_strides.erase(in_strides.begin() + axis_);
|
|
shape.erase(shape.begin() + axis_);
|
|
size_t ndim = shape.size();
|
|
|
|
// ArgReduce.
|
|
auto& encoder = cu::get_command_encoder(s);
|
|
encoder.set_input_array(in);
|
|
encoder.set_output_array(out);
|
|
encoder.launch_kernel([&](cudaStream_t stream) {
|
|
MLX_SWITCH_REAL_TYPES_CHECKED(in.dtype(), "ArgReduce", CTYPE, {
|
|
using InType = cuda_type_t<CTYPE>;
|
|
constexpr uint32_t N_READS = 4;
|
|
MLX_SWITCH_BLOCK_DIM(cuda::ceil_div(axis_size, N_READS), BLOCK_DIM, {
|
|
dim3 num_blocks = get_2d_grid_dims(out.shape(), out.strides());
|
|
dim3 block_dims{1, 1, BLOCK_DIM};
|
|
auto kernel = &cu::arg_reduce_general<
|
|
InType,
|
|
cu::ArgMax<InType>,
|
|
BLOCK_DIM,
|
|
N_READS>;
|
|
if (reduce_type_ == ArgReduce::ArgMin) {
|
|
kernel = &cu::arg_reduce_general<
|
|
InType,
|
|
cu::ArgMin<InType>,
|
|
BLOCK_DIM,
|
|
N_READS>;
|
|
}
|
|
kernel<<<num_blocks, block_dims, 0, stream>>>(
|
|
in.data<InType>(),
|
|
out.data<uint32_t>(),
|
|
const_param(shape),
|
|
const_param(in_strides),
|
|
const_param(out_strides),
|
|
ndim,
|
|
axis_stride,
|
|
axis_size);
|
|
});
|
|
});
|
|
});
|
|
}
|
|
|
|
} // namespace mlx::core
|