mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-20 08:01:12 +08:00

* implemented vector_norm in cpp added linalg to mlx * implemented vector_norm python binding * renamed vector_norm to norm, implemented norm without provided ord * completed the implementation of the norm * added tests * removed unused import in linalg.cpp * updated python bindings * added some tests for python bindings * handling inf, -inf as numpy does, more extensive tests of compatibility with numpy * added better docs and examples * refactored mlx.linalg.norm bindings * reused existing util for implementation of linalg.norm * more tests * fixed a bug with no ord and axis provided * removed unused imports * some style and API consistency updates to linalg norm * remove unused includes * fix python tests * fixed a bug with frobenius norm of a complex-valued matrix * complex for vector too --------- Co-authored-by: Awni Hannun <awni@apple.com>
176 lines
5.0 KiB
C++
176 lines
5.0 KiB
C++
// Copyright © 2023 Apple Inc.
|
|
|
|
#include <numeric>
|
|
#include <ostream>
|
|
#include <vector>
|
|
|
|
#include "mlx/dtype.h"
|
|
#include "mlx/linalg.h"
|
|
|
|
namespace mlx::core::linalg {
|
|
|
|
Dtype at_least_float(const Dtype& d) {
|
|
return is_floating_point(d) ? d : promote_types(d, float32);
|
|
}
|
|
|
|
inline array l2_norm(
|
|
const array& a,
|
|
const std::vector<int>& axis,
|
|
bool keepdims,
|
|
StreamOrDevice s) {
|
|
if (is_complex(a.dtype())) {
|
|
return sqrt(sum(abs(a, s) * abs(a, s), axis, keepdims, s), s);
|
|
} else {
|
|
return sqrt(sum(square(a, s), axis, keepdims, s), s);
|
|
}
|
|
}
|
|
|
|
inline array vector_norm(
|
|
const array& a,
|
|
const double ord,
|
|
const std::vector<int>& axis,
|
|
bool keepdims,
|
|
StreamOrDevice s) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
if (ord == 0.0) {
|
|
return astype(sum(not_equal(a, array(0), s), axis, keepdims, s), dtype, s);
|
|
} else if (ord == 1.0) {
|
|
return astype(sum(abs(a, s), axis, keepdims, s), dtype, s);
|
|
} else if (ord == 2.0) {
|
|
return l2_norm(a, axis, keepdims, s);
|
|
} else if (ord == std::numeric_limits<double>::infinity()) {
|
|
return astype(max(abs(a, s), axis, keepdims, s), dtype, s);
|
|
} else if (ord == -std::numeric_limits<double>::infinity()) {
|
|
return astype(min(abs(a, s), axis, keepdims, s), dtype, s);
|
|
} else {
|
|
return power(
|
|
sum(power(abs(a, s), array(ord, dtype), s), axis, keepdims, s),
|
|
array(1.0 / ord, dtype),
|
|
s);
|
|
}
|
|
}
|
|
|
|
inline array matrix_norm(
|
|
const array& a,
|
|
const double ord,
|
|
const std::vector<int>& axis,
|
|
bool keepdims,
|
|
StreamOrDevice s) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto row_axis = axis[0];
|
|
auto col_axis = axis[1];
|
|
if (ord == -1.0) {
|
|
col_axis -= (!keepdims && col_axis > row_axis && col_axis > 0);
|
|
return astype(
|
|
min(sum(abs(a, s), row_axis, keepdims, s), col_axis, keepdims, s),
|
|
dtype,
|
|
s);
|
|
} else if (ord == 1.0) {
|
|
col_axis -= (!keepdims && col_axis > row_axis && col_axis > 0);
|
|
return astype(
|
|
max(sum(abs(a, s), row_axis, keepdims, s), col_axis, keepdims, s),
|
|
dtype,
|
|
s);
|
|
} else if (ord == std::numeric_limits<double>::infinity()) {
|
|
row_axis -= (!keepdims && row_axis > col_axis && row_axis > 0);
|
|
return astype(
|
|
max(sum(abs(a, s), col_axis, keepdims, s), row_axis, keepdims, s),
|
|
dtype,
|
|
s);
|
|
} else if (ord == -std::numeric_limits<double>::infinity()) {
|
|
row_axis -= (!keepdims && row_axis > col_axis && row_axis > 0);
|
|
return astype(
|
|
min(sum(abs(a, s), col_axis, keepdims, s), row_axis, keepdims, s),
|
|
dtype,
|
|
s);
|
|
} else if (ord == 2.0 || ord == -2.0) {
|
|
throw std::runtime_error(
|
|
"[linalg::norm] Singular value norms are not implemented.");
|
|
} else {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::norm] Invalid ord " << ord << " for matrix norm.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
|
|
inline array matrix_norm(
|
|
const array& a,
|
|
const std::string& ord,
|
|
const std::vector<int>& axis,
|
|
bool keepdims,
|
|
StreamOrDevice s) {
|
|
if (ord == "f" || ord == "fro") {
|
|
return l2_norm(a, axis, keepdims, s);
|
|
} else if (ord == "nuc") {
|
|
throw std::runtime_error(
|
|
"[linalg::norm] Nuclear norm not yet implemented.");
|
|
} else {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::norm] Invalid ord value '" << ord << "' for matrix norm.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
|
|
array norm(
|
|
const array& a,
|
|
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (!axis) {
|
|
return norm(flatten(a, s), std::vector<int>{0}, keepdims, s);
|
|
}
|
|
|
|
if (axis.value().size() > 2) {
|
|
throw std::invalid_argument(
|
|
"[linalg::norm] Received too many axes for norm.");
|
|
}
|
|
return l2_norm(a, axis.value(), keepdims, s);
|
|
}
|
|
|
|
array norm(
|
|
const array& a,
|
|
const double ord,
|
|
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
std::vector<int> ax;
|
|
if (!axis) {
|
|
ax.resize(a.ndim());
|
|
std::iota(ax.begin(), ax.end(), 0);
|
|
} else {
|
|
ax = axis.value();
|
|
}
|
|
if (ax.size() == 1) {
|
|
return vector_norm(a, ord, ax, keepdims, s);
|
|
} else if (ax.size() == 2) {
|
|
return matrix_norm(a, ord, ax, keepdims, s);
|
|
} else {
|
|
throw std::invalid_argument(
|
|
"[linalg::norm] Received too many axes for norm.");
|
|
}
|
|
}
|
|
|
|
array norm(
|
|
const array& a,
|
|
const std::string& ord,
|
|
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
std::vector<int> ax;
|
|
if (!axis) {
|
|
ax.resize(a.ndim());
|
|
std::iota(ax.begin(), ax.end(), 0);
|
|
} else {
|
|
ax = axis.value();
|
|
}
|
|
if (ax.size() != 2) {
|
|
std::ostringstream msg;
|
|
msg << "[linalg::norm] Norm '" << ord << "' only supported for matrices,"
|
|
<< " but received " << ax.size() << " axis/axes.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
return matrix_norm(a, ord, ax, keepdims, s);
|
|
}
|
|
|
|
} // namespace mlx::core::linalg
|