mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
Some checks failed
Build and Test / check_lint (push) Has been cancelled
Build and Test / linux_build_and_test (ubuntu-22.04) (push) Has been cancelled
Build and Test / linux_build_and_test (ubuntu-22.04-arm) (push) Has been cancelled
Build and Test / mac_build_and_test (14.0) (push) Has been cancelled
Build and Test / mac_build_and_test (15.0) (push) Has been cancelled
Build and Test / cuda_build_and_test (cuda-12.6) (push) Has been cancelled
Build and Test / cuda_build_and_test (cuda-12.9) (push) Has been cancelled
Build and Test / build_documentation (push) Has been cancelled
Build and Test / Linux Fedora CPP Build (aarch64) (push) Has been cancelled
Build and Test / Linux Fedora CPP Build (x86_64) (push) Has been cancelled
Nightly Build / build_linux_release (3.10) (push) Has been cancelled
Nightly Build / build_linux_release (3.14) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.11, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.11, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.12, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.12, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.13, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.13, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.14, ubuntu-22.04) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.14, ubuntu-22.04-arm) (push) Has been cancelled
Nightly Build / build_mac_release (3.10) (push) Has been cancelled
Nightly Build / build_mac_release (3.13) (push) Has been cancelled
Nightly Build / build_cuda_release (push) Has been cancelled
383 lines
13 KiB
Plaintext
383 lines
13 KiB
Plaintext
// Copyright © 2025 Apple Inc.
|
|
|
|
#include "mlx/backend/common/binary.h"
|
|
#include "mlx/backend/cuda/device.h"
|
|
#include "mlx/backend/cuda/device/binary_ops.cuh"
|
|
#include "mlx/backend/cuda/kernel_utils.cuh"
|
|
#include "mlx/dtype_utils.h"
|
|
#include "mlx/primitives.h"
|
|
|
|
#include <cooperative_groups.h>
|
|
#include <nvtx3/nvtx3.hpp>
|
|
|
|
namespace mlx::core {
|
|
|
|
namespace cu {
|
|
|
|
namespace cg = cooperative_groups;
|
|
|
|
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
|
__global__ void binary_ss(const In* a, const In* b, Out* out, IdxT size) {
|
|
IdxT index = cg::this_grid().thread_rank();
|
|
|
|
if ((index + 1) * N_READS > size) {
|
|
for (int i = index * N_READS; i < size; ++i) {
|
|
out[i] = Op{}(a[0], b[0]);
|
|
}
|
|
} else {
|
|
AlignedVector<Out, N_READS> out_vec;
|
|
#pragma unroll
|
|
for (int i = 0; i < N_READS; ++i) {
|
|
out_vec[i] = Op{}(a[0], b[0]);
|
|
}
|
|
|
|
store_vector<N_READS>(out, index, out_vec);
|
|
}
|
|
}
|
|
|
|
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
|
__global__ void binary_sv(const In* a, const In* b, Out* out, IdxT size) {
|
|
IdxT index = cg::this_grid().thread_rank();
|
|
|
|
if ((index + 1) * N_READS > size) {
|
|
for (IdxT i = index * N_READS; i < size; ++i) {
|
|
out[i] = Op{}(a[0], b[i]);
|
|
}
|
|
} else {
|
|
auto b_vec = load_vector<N_READS>(b, index);
|
|
|
|
AlignedVector<Out, N_READS> out_vec;
|
|
#pragma unroll
|
|
for (int i = 0; i < N_READS; ++i) {
|
|
out_vec[i] = Op{}(a[0], b_vec[i]);
|
|
}
|
|
|
|
store_vector<N_READS>(out, index, out_vec);
|
|
}
|
|
}
|
|
|
|
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
|
__global__ void binary_vs(const In* a, const In* b, Out* out, IdxT size) {
|
|
IdxT index = cg::this_grid().thread_rank();
|
|
|
|
if ((index + 1) * N_READS > size) {
|
|
for (IdxT i = index * N_READS; i < size; ++i) {
|
|
out[i] = Op{}(a[i], b[0]);
|
|
}
|
|
} else {
|
|
auto a_vec = load_vector<N_READS>(a, index);
|
|
|
|
AlignedVector<Out, N_READS> out_vec;
|
|
#pragma unroll
|
|
for (int i = 0; i < N_READS; ++i) {
|
|
out_vec[i] = Op{}(a_vec[i], b[0]);
|
|
}
|
|
|
|
store_vector<N_READS>(out, index, out_vec);
|
|
}
|
|
}
|
|
|
|
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
|
__global__ void binary_vv(const In* a, const In* b, Out* out, IdxT size) {
|
|
IdxT index = cg::this_grid().thread_rank();
|
|
|
|
if ((index + 1) * N_READS > size) {
|
|
for (IdxT i = index * N_READS; i < size; ++i) {
|
|
out[i] = Op{}(a[i], b[i]);
|
|
}
|
|
} else {
|
|
auto a_vec = load_vector<N_READS>(a, index);
|
|
auto b_vec = load_vector<N_READS>(b, index);
|
|
|
|
AlignedVector<Out, N_READS> out_vec;
|
|
#pragma unroll
|
|
for (int i = 0; i < N_READS; ++i) {
|
|
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
|
}
|
|
|
|
store_vector<N_READS>(out, index, out_vec);
|
|
}
|
|
}
|
|
|
|
template <
|
|
typename Op,
|
|
typename In,
|
|
typename Out,
|
|
typename IdxT,
|
|
int NDIM,
|
|
int N_READS>
|
|
__global__ void binary_g_nd(
|
|
const In* a,
|
|
const In* b,
|
|
Out* out,
|
|
IdxT size_rest,
|
|
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
|
|
const __grid_constant__ cuda::std::array<int64_t, NDIM> a_strides,
|
|
const __grid_constant__ cuda::std::array<int64_t, NDIM> b_strides) {
|
|
auto block = cg::this_thread_block();
|
|
auto grid = cg::this_grid();
|
|
IdxT index_rest =
|
|
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
|
if (index_rest >= size_rest) {
|
|
return;
|
|
}
|
|
|
|
auto shape_x = shape[NDIM - 1];
|
|
auto a_stride_x = a_strides[NDIM - 1];
|
|
auto b_stride_x = b_strides[NDIM - 1];
|
|
IdxT index_x =
|
|
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
|
auto [a_idx, b_idx] = elem_to_loc_nd<NDIM>(
|
|
index_rest * shape_x, shape.data(), a_strides.data(), b_strides.data());
|
|
auto a_vec =
|
|
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
|
auto b_vec =
|
|
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
|
|
|
AlignedVector<Out, N_READS> out_vec;
|
|
#pragma unroll
|
|
for (int i = 0; i < N_READS; ++i) {
|
|
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
|
}
|
|
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
|
}
|
|
|
|
template <typename Op, typename In, typename Out, typename IdxT, int N_READS>
|
|
__global__ void binary_g(
|
|
const In* a,
|
|
const In* b,
|
|
Out* out,
|
|
IdxT size_rest,
|
|
const __grid_constant__ Shape shape,
|
|
const __grid_constant__ Strides a_strides,
|
|
const __grid_constant__ Strides b_strides,
|
|
int ndim) {
|
|
auto block = cg::this_thread_block();
|
|
auto grid = cg::this_grid();
|
|
IdxT index_rest =
|
|
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
|
|
if (index_rest >= size_rest) {
|
|
return;
|
|
}
|
|
|
|
auto shape_x = shape[ndim - 1];
|
|
auto a_stride_x = a_strides[ndim - 1];
|
|
auto b_stride_x = b_strides[ndim - 1];
|
|
IdxT index_x =
|
|
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
|
|
auto [a_idx, b_idx] = elem_to_loc(
|
|
index_rest * shape_x,
|
|
shape.data(),
|
|
a_strides.data(),
|
|
b_strides.data(),
|
|
ndim);
|
|
auto a_vec =
|
|
load_vector<N_READS>(a + a_idx, index_x, shape_x, a_stride_x, In(0));
|
|
auto b_vec =
|
|
load_vector<N_READS>(b + b_idx, index_x, shape_x, b_stride_x, In(0));
|
|
|
|
AlignedVector<Out, N_READS> out_vec;
|
|
#pragma unroll
|
|
for (int i = 0; i < N_READS; ++i) {
|
|
out_vec[i] = Op{}(a_vec[i], b_vec[i]);
|
|
}
|
|
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
|
|
}
|
|
|
|
template <typename Op, typename In, typename Out>
|
|
constexpr bool supports_binary_op() {
|
|
if (std::is_same_v<Op, Add> || std::is_same_v<Op, Divide> ||
|
|
std::is_same_v<Op, Maximum> || std::is_same_v<Op, Minimum> ||
|
|
std::is_same_v<Op, Multiply> || std::is_same_v<Op, Subtract> ||
|
|
std::is_same_v<Op, Power> || std::is_same_v<Op, Remainder>) {
|
|
return std::is_same_v<In, Out>;
|
|
}
|
|
if (std::is_same_v<Op, Equal> || std::is_same_v<Op, Greater> ||
|
|
std::is_same_v<Op, GreaterEqual> || std::is_same_v<Op, Less> ||
|
|
std::is_same_v<Op, LessEqual> || std::is_same_v<Op, NotEqual>) {
|
|
return std::is_same_v<Out, bool>;
|
|
}
|
|
if (std::is_same_v<Op, LogicalAnd> || std::is_same_v<Op, LogicalOr>) {
|
|
return std::is_same_v<Out, bool> && std::is_same_v<In, bool>;
|
|
}
|
|
if (std::is_same_v<Op, NaNEqual>) {
|
|
return std::is_same_v<Out, bool> && is_inexact_v<In>;
|
|
}
|
|
if (std::is_same_v<Op, LogAddExp>) {
|
|
return std::is_same_v<In, Out> && is_inexact_v<In>;
|
|
}
|
|
if (std::is_same_v<Op, ArcTan2>) {
|
|
return std::is_same_v<In, Out> && is_floating_v<In>;
|
|
}
|
|
if (std::is_same_v<Op, BitwiseAnd> || std::is_same_v<Op, BitwiseOr> ||
|
|
std::is_same_v<Op, BitwiseXor>) {
|
|
return std::is_same_v<In, Out> && std::is_integral_v<In>;
|
|
}
|
|
if (std::is_same_v<Op, LeftShift> || std::is_same_v<Op, RightShift>) {
|
|
return std::is_same_v<In, Out> && std::is_integral_v<In> &&
|
|
!std::is_same_v<In, bool>;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
} // namespace cu
|
|
|
|
template <typename Op>
|
|
void binary_op_gpu_inplace(
|
|
const std::vector<array>& inputs,
|
|
array& out,
|
|
const char* op,
|
|
const Stream& s) {
|
|
assert(inputs.size() > 1);
|
|
const auto& a = inputs[0];
|
|
const auto& b = inputs[1];
|
|
if (out.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
auto& encoder = cu::get_command_encoder(s);
|
|
encoder.set_input_array(a);
|
|
encoder.set_input_array(b);
|
|
encoder.set_output_array(out);
|
|
dispatch_all_types(a.dtype(), [&](auto in_type_tag) {
|
|
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
|
|
using CTYPE_IN = MLX_GET_TYPE(in_type_tag);
|
|
using CTYPE_OUT = MLX_GET_TYPE(out_type_tag);
|
|
if constexpr (cu::supports_binary_op<Op, CTYPE_IN, CTYPE_OUT>()) {
|
|
using InType = cuda_type_t<CTYPE_IN>;
|
|
using OutType = cuda_type_t<CTYPE_OUT>;
|
|
auto bopt = get_binary_op_type(a, b);
|
|
if (bopt == BinaryOpType::General) {
|
|
dispatch_bool(
|
|
a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
|
out.data_size() > INT32_MAX,
|
|
[&](auto large) {
|
|
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
|
|
Shape shape;
|
|
std::vector<Strides> strides;
|
|
std::tie(shape, strides) = collapse_contiguous_dims(a, b, out);
|
|
auto& a_strides = strides[0];
|
|
auto& b_strides = strides[1];
|
|
int ndim = shape.size();
|
|
int work_per_thread = 1;
|
|
auto dim0 = ndim > 0 ? shape.back() : 1;
|
|
auto rest = out.size() / dim0;
|
|
if (dim0 >= 4) {
|
|
work_per_thread = 4;
|
|
}
|
|
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
|
auto block_dims = get_block_dims(dim0, rest, 1);
|
|
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
|
|
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
|
|
if (ndim <= 3) {
|
|
dispatch_1_2_3(ndim, [&](auto dims_constant) {
|
|
auto kernel = cu::binary_g_nd<
|
|
Op,
|
|
InType,
|
|
OutType,
|
|
IdxT,
|
|
dims_constant(),
|
|
1>;
|
|
if (work_per_thread == 4) {
|
|
kernel = cu::binary_g_nd<
|
|
Op,
|
|
InType,
|
|
OutType,
|
|
IdxT,
|
|
dims_constant(),
|
|
4>;
|
|
}
|
|
encoder.add_kernel_node(
|
|
kernel,
|
|
{num_blocks_x, num_blocks_y},
|
|
block_dims,
|
|
0,
|
|
gpu_ptr<InType>(a),
|
|
gpu_ptr<InType>(b),
|
|
gpu_ptr<OutType>(out),
|
|
rest,
|
|
const_param<dims_constant()>(shape),
|
|
const_param<dims_constant()>(a_strides),
|
|
const_param<dims_constant()>(b_strides));
|
|
});
|
|
} else {
|
|
auto kernel = cu::binary_g<Op, InType, OutType, IdxT, 1>;
|
|
if (work_per_thread == 4) {
|
|
kernel = cu::binary_g<Op, InType, OutType, IdxT, 4>;
|
|
}
|
|
encoder.add_kernel_node(
|
|
kernel,
|
|
{num_blocks_x, num_blocks_y},
|
|
block_dims,
|
|
0,
|
|
gpu_ptr<InType>(a),
|
|
gpu_ptr<InType>(b),
|
|
gpu_ptr<OutType>(out),
|
|
rest,
|
|
const_param(shape),
|
|
const_param(a_strides),
|
|
const_param(b_strides),
|
|
ndim);
|
|
}
|
|
});
|
|
} else {
|
|
dispatch_bool(out.data_size() > UINT32_MAX, [&](auto large) {
|
|
using IdxT = std::conditional_t<large(), int64_t, uint32_t>;
|
|
constexpr int N_READS = 16 / sizeof(InType);
|
|
auto kernel = cu::binary_ss<Op, InType, OutType, IdxT, N_READS>;
|
|
if (bopt == BinaryOpType::ScalarVector) {
|
|
kernel = cu::binary_sv<Op, InType, OutType, IdxT, N_READS>;
|
|
} else if (bopt == BinaryOpType::VectorScalar) {
|
|
kernel = cu::binary_vs<Op, InType, OutType, IdxT, N_READS>;
|
|
} else if (bopt == BinaryOpType::VectorVector) {
|
|
kernel = cu::binary_vv<Op, InType, OutType, IdxT, N_READS>;
|
|
}
|
|
auto [num_blocks, block_dims] = get_launch_args(
|
|
out.data_size(), out.shape(), out.strides(), large(), N_READS);
|
|
encoder.add_kernel_node(
|
|
kernel,
|
|
num_blocks,
|
|
block_dims,
|
|
0,
|
|
gpu_ptr<InType>(a),
|
|
gpu_ptr<InType>(b),
|
|
gpu_ptr<OutType>(out),
|
|
out.data_size());
|
|
});
|
|
}
|
|
} else {
|
|
throw std::runtime_error(fmt::format(
|
|
"Can not do binary op {} on inputs of {} with result of {}.",
|
|
op,
|
|
dtype_to_string(a.dtype()),
|
|
dtype_to_string(out.dtype())));
|
|
}
|
|
});
|
|
});
|
|
}
|
|
|
|
template <typename Op>
|
|
void binary_op_gpu(
|
|
const std::vector<array>& inputs,
|
|
array& out,
|
|
const char* op,
|
|
const Stream& s) {
|
|
auto& a = inputs[0];
|
|
auto& b = inputs[1];
|
|
auto bopt = get_binary_op_type(a, b);
|
|
auto& encoder = cu::get_command_encoder(s);
|
|
|
|
set_binary_op_output_data(
|
|
a, b, out, bopt, [&](auto n) { return cu::malloc_async(n, encoder); });
|
|
binary_op_gpu_inplace<Op>(inputs, out, op, s);
|
|
}
|
|
|
|
#define BINARY_GPU(func) \
|
|
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
|
|
nvtx3::scoped_range r(#func "::eval_gpu"); \
|
|
auto& s = out.primitive().stream(); \
|
|
binary_op_gpu<cu::func>(inputs, out, name(), s); \
|
|
}
|
|
|
|
} // namespace mlx::core
|