Files
mlx/mlx/backend/cuda/sort.cu
2025-10-30 10:32:57 -07:00

209 lines
6.0 KiB
Plaintext

// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/gpu/copy.h"
#include "mlx/dtype_utils.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
#include <cub/device/device_segmented_radix_sort.cuh>
#include <cassert>
namespace mlx::core {
namespace {
template <typename T>
struct ModOp {
T divisor;
__device__ T operator()(T x) {
return x % divisor;
}
};
struct OffsetTransform {
int nsort;
int __device__ operator()(int i) {
return i * nsort;
}
};
void gpu_sort(const Stream& s, array in, array& out_, int axis, bool argsort) {
array out = out_;
auto& encoder = cu::get_command_encoder(s);
if (axis < 0) {
axis += in.ndim();
}
int nsort = in.shape(axis);
int last_dim = in.ndim() - 1;
// If we are not sorting the innermost dimension of a contiguous array,
// transpose and make a copy.
bool is_segmented_sort = in.flags().contiguous && in.strides()[axis] == 1;
if (!is_segmented_sort) {
array trans = swapaxes_in_eval(in, axis, last_dim);
in = contiguous_copy_gpu(trans, s);
encoder.add_temporary(in);
out = array(
cu::malloc_async(out.nbytes(), encoder.stream()),
in.shape(),
out.dtype());
encoder.add_temporary(out);
} else {
out.set_data(
cu::malloc_async(in.data_size() * out.itemsize(), encoder.stream()),
in.data_size(),
in.strides(),
in.flags());
}
encoder.set_input_array(in);
encoder.set_output_array(out);
dispatch_all_types(in.dtype(), [&](auto type_tag) {
using CTYPE = MLX_GET_TYPE(type_tag);
auto& stream = encoder.stream();
if constexpr (!std::is_same_v<CTYPE, complex64_t>) {
using Type = cuda_type_t<CTYPE>;
auto offsets = thrust::make_transform_iterator(
thrust::make_counting_iterator(0), OffsetTransform{nsort});
if (argsort) {
// Indices in the sorted dimension.
array indices(
cu::malloc_async(out.nbytes(), encoder.stream()),
in.shape(),
out.dtype());
encoder.add_temporary(indices);
// In argsort though we don't need the result of sorted values, the
// API requires us to provide an array to store it.
array discard(
cu::malloc_async(in.nbytes(), encoder.stream()),
in.shape(),
in.dtype());
encoder.add_temporary(discard);
size_t size;
CHECK_CUDA_ERROR(cub::DeviceSegmentedRadixSort::SortPairs(
nullptr,
size,
in.data<Type>(),
discard.data<Type>(),
indices.data<uint32_t>(),
out.data<uint32_t>(),
in.data_size(),
in.data_size() / nsort,
offsets,
offsets + 1,
0,
sizeof(Type) * 8,
stream));
array temp(
cu::malloc_async(size, encoder.stream()),
{static_cast<int>(size)},
uint8);
encoder.add_temporary(temp);
// Start capturing after allocations
auto capture = encoder.capture_context();
thrust::transform(
cu::thrust_policy(stream),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(indices.data_size()),
thrust::device_pointer_cast(indices.data<uint32_t>()),
ModOp<uint32_t>{static_cast<uint32_t>(nsort)});
CHECK_CUDA_ERROR(cub::DeviceSegmentedRadixSort::SortPairs(
temp.data<void>(),
size,
in.data<Type>(),
discard.data<Type>(),
indices.data<uint32_t>(),
out.data<uint32_t>(),
in.data_size(),
in.data_size() / nsort,
offsets,
offsets + 1,
0,
sizeof(Type) * 8,
stream));
} else {
size_t size;
CHECK_CUDA_ERROR(cub::DeviceSegmentedRadixSort::SortKeys(
nullptr,
size,
in.data<Type>(),
out.data<Type>(),
in.data_size(),
in.data_size() / nsort,
offsets,
offsets + 1,
0,
sizeof(Type) * 8,
stream));
array temp(
cu::malloc_async(size, encoder.stream()),
{static_cast<int>(size)},
uint8);
encoder.add_temporary(temp);
// Start capturing after allocations
auto capture = encoder.capture_context();
CHECK_CUDA_ERROR(cub::DeviceSegmentedRadixSort::SortKeys(
temp.data<void>(),
size,
in.data<Type>(),
out.data<Type>(),
in.data_size(),
in.data_size() / nsort,
offsets,
offsets + 1,
0,
sizeof(Type) * 8,
stream));
}
} else {
throw std::runtime_error(
"CUDA backend does not support sorting complex numbers");
}
});
if (!is_segmented_sort) {
// Swap the sorted axis back.
// TODO: Do in-place transpose instead of using a temporary out array.
copy_gpu(swapaxes_in_eval(out, axis, last_dim), out_, CopyType::General, s);
}
}
} // namespace
void ArgSort::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("ArgSort::eval_gpu");
assert(inputs.size() == 1);
gpu_sort(stream(), inputs[0], out, axis_, true);
}
void Sort::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Sort::eval_gpu");
assert(inputs.size() == 1);
gpu_sort(stream(), inputs[0], out, axis_, false);
}
void ArgPartition::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("ArgPartition::eval_gpu");
gpu_sort(stream(), inputs[0], out, axis_, true);
}
void Partition::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Partition::eval_gpu");
gpu_sort(stream(), inputs[0], out, axis_, false);
}
} // namespace mlx::core