mlx/mlx/compile.cpp
Awni Hannun 7b463ffb07
Ios compile (#784)
* try to fix build for ios

* skip cpu compile

* fix namespace

* fix namespace

* Use CMake for platform specific cpu compile

---------

Co-authored-by: Angelos Katharopoulos <a_katharopoulos@apple.com>
2024-03-04 20:02:26 -08:00

854 lines
26 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <cstdlib>
#include <map>
#include <unordered_map>
#include <unordered_set>
#include "mlx/allocator.h"
#include "mlx/compile.h"
#include "mlx/compile_impl.h"
#include "mlx/primitives.h"
#include "mlx/transforms.h"
#include "mlx/transforms_impl.h"
namespace mlx::core {
constexpr int max_compile_depth = 11;
bool is_unary(const Primitive& p) {
return (
typeid(p) == typeid(Abs) || typeid(p) == typeid(ArcCos) ||
typeid(p) == typeid(ArcCosh) || typeid(p) == typeid(ArcSin) ||
typeid(p) == typeid(ArcSinh) || typeid(p) == typeid(ArcTan) ||
typeid(p) == typeid(ArcTanh) || typeid(p) == typeid(AsType) ||
typeid(p) == typeid(Ceil) || typeid(p) == typeid(Cos) ||
typeid(p) == typeid(Cosh) || typeid(p) == typeid(Remainder) ||
typeid(p) == typeid(Erf) || typeid(p) == typeid(ErfInv) ||
typeid(p) == typeid(Exp) || typeid(p) == typeid(Floor) ||
typeid(p) == typeid(Log) || typeid(p) == typeid(Log1p) ||
typeid(p) == typeid(LogicalNot) || typeid(p) == typeid(Negative) ||
typeid(p) == typeid(Round) || typeid(p) == typeid(Sigmoid) ||
typeid(p) == typeid(Sign) || typeid(p) == typeid(Sin) ||
typeid(p) == typeid(Sinh) || typeid(p) == typeid(Square) ||
typeid(p) == typeid(Sqrt) || typeid(p) == typeid(Tan) ||
typeid(p) == typeid(Tanh));
}
bool is_binary(const Primitive& p) {
return (
typeid(p) == typeid(Add) || typeid(p) == typeid(Divide) ||
typeid(p) == typeid(Equal) || typeid(p) == typeid(Greater) ||
typeid(p) == typeid(GreaterEqual) || typeid(p) == typeid(Less) ||
typeid(p) == typeid(LessEqual) || typeid(p) == typeid(LogicalNot) ||
typeid(p) == typeid(LogicalAnd) || typeid(p) == typeid(LogicalOr) ||
typeid(p) == typeid(LogAddExp) || typeid(p) == typeid(Maximum) ||
typeid(p) == typeid(Minimum) || typeid(p) == typeid(Multiply) ||
typeid(p) == typeid(NotEqual) || typeid(p) == typeid(Power) ||
typeid(p) == typeid(Subtract));
}
bool is_ternary(const Primitive& p) {
return typeid(p) == typeid(Select);
}
bool is_broadcast(const Primitive& p) {
return typeid(p) == typeid(Broadcast);
}
bool is_noop(const Primitive& p) {
return typeid(p) == typeid(Copy) || typeid(p) == typeid(StopGradient);
}
bool is_reduction(const Primitive& p) {
return typeid(p) == typeid(Reduce) || typeid(p) == typeid(ArgReduce);
}
bool is_fusable(const Primitive& p) {
return is_unary(p) || is_binary(p) || is_ternary(p) || is_broadcast(p) ||
is_noop(p);
}
bool allows_shapeless(const Primitive& p) {
return typeid(p) == typeid(Compiled) || is_unary(p) || is_binary(p) ||
is_noop(p) || is_reduction(p) || typeid(p) == typeid(Softmax) ||
typeid(p) == typeid(Sort) || typeid(p) == typeid(ArgSort) ||
typeid(p) == typeid(ArgPartition) || typeid(p) == typeid(Partition) ||
typeid(p) == typeid(Select);
}
Compiled::Compiled(
Stream stream,
std::vector<array> inputs,
std::vector<array> outputs,
std::vector<array> tape,
std::unordered_set<uintptr_t> constant_ids)
: Primitive(stream),
inputs_(std::move(inputs)),
outputs_(std::move(outputs)),
tape_(std::move(tape)),
constant_ids_(std::move(constant_ids)) {}
std::vector<array> Compiled::vjp(
const std::vector<array>& primals,
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>& outputs) {
throw std::runtime_error("[Compiled] Cannot vjp primitive.");
}
std::vector<array> Compiled::jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
throw std::runtime_error("[Compiled] Cannot jvp primitive.");
}
std::pair<std::vector<array>, std::vector<int>> Compiled::vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) {
throw std::runtime_error("[Compiled] Cannot vmap primitive.");
}
bool Compiled::is_equivalent(const Primitive& other) const {
const Compiled& a_other = static_cast<const Compiled&>(other);
return std::equal(
tape_.begin(),
tape_.end(),
a_other.tape_.begin(),
a_other.tape_.end(),
[](const array& a1, const array& a2) {
auto& p1 = a1.primitive();
auto& p2 = a2.primitive();
return typeid(p1) == typeid(p2) && p1.is_equivalent(p2);
});
}
void Compiled::print(std::ostream& os) {
os << "Compiled";
for (auto& a : tape_) {
a.primitive().print(os);
}
}
std::vector<std::vector<int>> Compiled::output_shapes(
const std::vector<array>& inputs) {
size_t nd = 0;
for (auto& in : inputs) {
nd = std::max(nd, in.ndim());
}
std::vector<int> out_shape(nd, 0);
for (auto& in : inputs) {
auto dd = nd - in.ndim();
for (auto i = dd; i < nd; ++i) {
out_shape[i] = std::max(out_shape[i], in.shape()[i - dd]);
}
}
// All outputs have the same shape
return std::vector<std::vector<int>>(outputs_.size(), out_shape);
}
namespace detail {
CompileMode& compile_mode() {
auto get_val = []() {
if (const char* buff_str = std::getenv("MLX_DISABLE_COMPILE")) {
return CompileMode::disabled;
} else {
return CompileMode::enabled;
}
};
static CompileMode compile_mode_ = get_val();
return compile_mode_;
}
using CompileFn = std::function<std::vector<array>(const std::vector<array>&)>;
using ParentsMap =
std::unordered_map<std::uintptr_t, std::vector<std::pair<array, int>>>;
// Helper that merges two arrays in the graph by setting the parents of the
// source to point to the destination
void merge(array& dst, array& src, ParentsMap& parents_map) {
// Canonicalize the order of the primitives outputs
auto sources = src.outputs();
auto dests = dst.outputs();
// For each src parent, point it to the corresponding dst
for (int i = 0; i < sources.size(); ++i) {
auto src_parents = parents_map.find(sources[i].id());
if (src_parents == parents_map.end()) {
continue;
}
auto& pairs = parents_map[dests[i].id()];
for (auto& parent : src_parents->second) {
parent.first.inputs()[parent.second] = dests[i];
pairs.push_back(parent);
}
// Remove the source from the map to avoid fusing with it again
parents_map.erase(src_parents);
}
};
template <typename T, typename... U>
size_t getAddress(std::function<T(U...)> f) {
typedef T(fnType)(U...);
fnType** fnPointer = f.template target<fnType*>();
if (fnPointer == nullptr) {
throw std::invalid_argument(
"[compile] Cannot compile a non-addressable function.");
}
return (size_t)*fnPointer;
}
struct CompilerCache {
struct CacheEntry {
std::vector<array> inputs;
std::vector<array> outputs;
std::vector<array> tape;
bool empty{true};
std::vector<uint64_t> constants;
};
// Returns a reference to a CacheEntry which can be updated
// by the caller to avoid copying large tapes / inputs / outputs
CacheEntry& find(
size_t fun_id,
const std::vector<array>& inputs,
bool shapeless,
const std::vector<uint64_t>& constants) {
// Try to find the entry
auto [entry_it, inserted] = cache_.insert({fun_id, {}});
auto& entries = entry_it->second;
auto is_match = [shapeless](
const std::vector<array>& in1,
const std::vector<array>& in2) {
if (in1.size() != in2.size()) {
return false;
}
for (int i = 0; i < in1.size(); ++i) {
if (in1[i].ndim() != in2[i].ndim()) {
return false;
}
if (!shapeless && in1[i].shape() != in2[i].shape()) {
return false;
}
if (in1[i].dtype() != in2[i].dtype()) {
return false;
}
}
return true;
};
// Loop over entries and check inputs match i.e. shapes and types must be
// equal. Note this could get really slow if one compiles the same
// function with many different shapes. May want to store entries in a
// more easily searchable structure.
for (auto& entry : entries) {
// Check the inputs match and return if so
if (is_match(inputs, entry.inputs) && constants == entry.constants) {
return entry;
}
}
// Otherwise append a new cache entry
entries.push_back(CacheEntry{});
return entries.back();
};
void erase(size_t fun_id) {
cache_.erase(fun_id);
}
private:
CompilerCache() {
// Make sure the allocator is fully
// initialized before the compiler cache
allocator::allocator();
}
friend CompilerCache& compiler_cache();
std::unordered_map<size_t, std::vector<CacheEntry>> cache_;
};
CompilerCache& compiler_cache() {
static CompilerCache compiler_cache_;
return compiler_cache_;
}
std::pair<std::vector<array>, std::vector<array>> compile_trace(
const std::function<std::vector<array>(const std::vector<array>&)>& fun,
const std::vector<array>& inputs) {
// Set the global tracing flag.
detail::InTracing in_tracing;
// Run the function on placeholder inputs
// to get compute graph
std::vector<array> tracer_inputs;
for (int i = 0; i < inputs.size(); ++i) {
array in(inputs[i].shape(), inputs[i].dtype(), nullptr, {});
in.set_tracer(true);
tracer_inputs.push_back(std::move(in));
}
return {tracer_inputs, fun(tracer_inputs)};
}
// Traverses the graph to build a tape and a map of array ids to their parents
std::pair<std::vector<array>, ParentsMap> compile_dfs(
const std::vector<array>& inputs,
const std::vector<array>& outputs) {
std::function<void(const array&)> recurse;
std::vector<array> tape;
std::unordered_set<std::uintptr_t> input_set;
std::unordered_map<std::uintptr_t, std::vector<std::pair<array, int>>>
parents_map;
for (int i = 0; i < inputs.size(); ++i) {
auto in = inputs[i];
input_set.insert(in.id());
}
// DFS the graph to build the tape, and log parents and scalars
std::unordered_set<std::uintptr_t> cache;
recurse = [&](const array& a) {
auto id = a.id();
if (cache.find(id) != cache.end()) {
return;
}
for (int i = 0; i < a.inputs().size(); i++) {
auto& in = a.inputs()[i];
parents_map[in.id()].push_back({a, i});
for (auto& s : a.siblings()) {
parents_map[in.id()].push_back({s, i});
}
// Don't recurse on inputs (but add them to the tape for the purpose
// of future optimizations)
if (input_set.find(a.id()) == input_set.end()) {
recurse(in);
}
}
cache.insert(id);
for (auto& s : a.siblings()) {
cache.insert(s.id());
}
tape.push_back(a);
};
for (auto& a : outputs) {
recurse(a);
}
return {tape, parents_map};
}
// Simplify the tape. Note, this function modifies in-place both the tape and
// the parents map to remove orphaned arrays
void compile_simplify(
std::vector<array>& tape,
ParentsMap& parents_map,
const std::vector<array>& outputs,
int passes) {
// Helpers to identify identical scalars
std::map<std::pair<uint64_t, Dtype::Val>, array> scalars;
auto is_scalar = [](const array& a) {
return a.is_evaled() && a.ndim() == 0;
};
auto get_scalar_rep = [](const array& a) {
uint64_t v = 0;
int dtype;
switch (a.dtype().size) {
case 1:
v = *a.data<uint8_t>();
break;
case 2:
v = *a.data<uint16_t>();
break;
case 4:
v = *a.data<uint32_t>();
break;
case 8:
v = *a.data<uint64_t>();
break;
}
return std::make_pair(v, a.dtype().val);
};
for (auto& a : tape) {
if (is_scalar(a)) {
scalars.insert({get_scalar_rep(a), a});
}
}
// Depth-1 array equivalence check.
auto array_equivalent = [](const array& a, const array& b) {
if (!a.has_primitive() || !b.has_primitive()) {
return false;
}
if (a.primitive_id() == b.primitive_id()) {
return false;
}
const auto& pa = a.primitive();
const auto& pb = b.primitive();
if (typeid(pa) != typeid(pb)) {
return false;
}
if (a.inputs().size() != b.inputs().size()) {
return false;
}
for (int i = 0; i < a.inputs().size(); i++) {
if (a.inputs()[i].id() != b.inputs()[i].id()) {
return false;
}
}
return pa.is_equivalent(pb);
};
// Merge scalars
std::vector<array> new_tape;
for (auto& arr : tape) {
// Check if we can merge scalars
if (is_scalar(arr)) {
auto scalar = scalars.find(get_scalar_rep(arr));
if (scalar->second.id() != arr.id()) {
merge(scalar->second, arr, parents_map);
// Don't keep orphaned scalars in the tape
continue;
}
}
new_tape.push_back(std::move(arr));
}
tape = std::move(new_tape);
std::unordered_set<uintptr_t> output_set;
for (auto& o : outputs) {
output_set.insert(o.id());
}
// Multi-pass merge only keeping non-orphaned arrays in the tape
for (int pass = 0; pass < passes; ++pass) {
for (auto& arr : tape) {
// Helper to check if we can merge the parents of the
// given array
auto maybe_merge_parents = [&](auto& a) {
auto parents = parents_map.find(a.id());
if (parents != parents_map.end()) {
auto N = parents->second.size();
std::vector<bool> mask(N, false);
for (int i = 0; i < N; i++) {
if (mask[i]) {
continue;
}
for (int j = i + 1; j < N; j++) {
if (mask[j]) {
continue;
}
auto& src = parents->second[j].first;
auto& dst = parents->second[i].first;
if (src.id() != dst.id() && array_equivalent(src, dst)) {
merge(dst, src, parents_map);
mask[j] = true;
}
}
}
// Erase orphaned parents so we don't keep fusing with them
for (int i = N - 1; i > 0; --i) {
if (mask[i]) {
parents->second.erase(parents->second.begin() + i);
}
}
return false;
} else {
return output_set.find(a.id()) == output_set.end();
}
};
bool discard = maybe_merge_parents(arr);
for (auto& s : arr.siblings()) {
discard &= maybe_merge_parents(s);
}
// If an array and its siblings have no parents, and none of them are
// outputs, it is safe to remove it from the tape
if (!discard) {
new_tape.push_back(std::move(arr));
}
}
tape = std::move(new_tape);
}
}
// Extract sub-graphs of the graph that can be compiled
// and replace them with a Compiled Primitive.
void compile_fuse(
std::vector<array>& tape,
ParentsMap& parents_map,
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Track outputs to replace with new compiled outputs
std::unordered_map<uintptr_t, array> output_map;
for (auto& o : outputs) {
output_map.insert({o.id(), o});
}
// Set of inputs to distinguish constants
std::unordered_set<uintptr_t> input_ids;
for (auto& in : inputs) {
input_ids.insert(in.id());
}
// Go through the tape in reverse order and check for fusable sub-graphs
std::vector<array> new_tape;
std::unordered_set<uintptr_t> global_cache;
for (int i = tape.size() - 1; i >= 0; --i) {
auto& arr = tape[i];
// Already compiled
if (global_cache.find(arr.id()) != global_cache.end()) {
continue;
}
// Two pass recursion:
// First pass:
// - Collect all the primitives which we can fuse with
// - Keeps a cache of fusable primitives which may be added out of
// DAG order. We have to determine if all of a fused primitive's
// outputs are also in the fused section, and this may not be the
// case the first time we visit it.
// Second pass:
// - Collect inputs to the new compiled primitive
// - Add fusable primitives to a tape in the correct order
std::function<void(const array&, int, const Stream&)> recurse;
std::unordered_set<uintptr_t> cache;
recurse = [&](const array& a, int depth, const Stream& s) {
if (cache.find(a.id()) != cache.end()) {
return;
}
// Stop fusing if:
// - Depth limit exceeded
// - Constant input
// - Stream mismatch
// - Non fusable primitive
if (depth >= max_compile_depth || !a.has_primitive() ||
a.primitive().stream() != s || !is_fusable(a.primitive())) {
return;
}
bool all_parents_in = true;
if (depth > 0) {
// Guaranteed to have a parent since nested in the
// recursion.
auto& parents = parents_map.at(a.id());
for (auto& [p, idx] : parents) {
auto in_cache = cache.find(p.id()) != cache.end();
if (!in_cache) {
all_parents_in = false;
break;
}
}
}
// Arrays with a mix of parents outside the compilable section
// are not fusable
if (!all_parents_in) {
return;
}
cache.insert({a.id()});
for (auto& in : a.inputs()) {
recurse(in, depth + 1, s);
}
};
if (arr.has_primitive()) {
Stream s = arr.primitive().stream();
recurse(arr, 0, s);
}
// Not worth fusing a single primitive
if (cache.size() <= 1) {
new_tape.push_back(arr);
continue;
}
// Recurse a second time to build the tape in the right
// order and collect the inputs
std::unordered_set<uintptr_t> input_set;
std::vector<array> inputs;
std::vector<array> fused_tape;
std::unordered_set<uintptr_t> tape_set;
std::function<void(const array&)> recurse_tape;
recurse_tape = [&](const array& a) {
if (cache.find(a.id()) == cache.end()) {
if (input_set.find(a.id()) == input_set.end()) {
input_set.insert(a.id());
inputs.push_back(a);
}
return;
}
if (tape_set.find(a.id()) != tape_set.end()) {
return;
}
tape_set.insert(a.id());
for (auto& in : a.inputs()) {
recurse_tape(in);
}
fused_tape.push_back(a);
};
recurse_tape(arr);
std::vector<array> old_outputs;
// Add to global cache and add any global outputs to outputs
// of new primitive
for (int j = 0; j < fused_tape.size() - 1; ++j) {
auto& f = fused_tape[j];
if (output_map.find(f.id()) != output_map.end()) {
old_outputs.push_back(f);
// Parents are now siblings, update the parent map
auto& pairs = parents_map[f.id()];
pairs.erase(
std::remove_if(
pairs.begin(),
pairs.end(),
[&](auto& p) {
return cache.find(p.first.id()) != cache.end();
}),
pairs.end());
} else {
// Remove inner fused arrays parents from the parents map
// to keep the parents map in a valid state
parents_map.erase(f.id());
}
global_cache.insert({f.id()});
}
old_outputs.push_back(arr);
std::vector<std::vector<int>> shapes;
std::vector<Dtype> types;
for (auto& o : old_outputs) {
shapes.push_back(o.shape());
types.push_back(o.dtype());
}
std::unordered_set<uintptr_t> constant_ids;
for (auto& in : inputs) {
// Scalar constant
if (in.size() == 1 && !in.has_primitive() &&
input_ids.find(in.id()) == input_ids.end()) {
constant_ids.insert(in.id());
}
}
auto compiled_outputs = array::make_arrays(
shapes,
types,
std::make_shared<Compiled>(
old_outputs.back().primitive().stream(),
inputs,
old_outputs,
std::move(fused_tape),
std::move(constant_ids)),
inputs);
// One output per primitive
new_tape.push_back(compiled_outputs.back());
// Replace inputs old parents with compiled_outputs
for (int i = 0; i < inputs.size(); ++i) {
auto& pairs = parents_map[inputs[i].id()];
pairs.erase(
std::remove_if(
pairs.begin(),
pairs.end(),
[&](auto& p) { return cache.find(p.first.id()) != cache.end(); }),
pairs.end());
for (auto& o : compiled_outputs) {
pairs.push_back({o, i});
}
}
// - Update outputs parents to point to compiled outputs
// - Update any overall graph outputs to be compiled outputs
for (int o = 0; o < old_outputs.size(); ++o) {
merge(compiled_outputs[o], old_outputs[o], parents_map);
if (auto it = output_map.find(old_outputs[o].id());
it != output_map.end()) {
it->second = compiled_outputs[o];
}
}
}
std::reverse(new_tape.begin(), new_tape.end());
tape = std::move(new_tape);
// Replace output with potentially compiled output
for (auto& o : outputs) {
o = output_map.at(o.id());
}
}
std::vector<array> compile_replace(
const std::vector<array>& tape,
const std::vector<array>& trace_inputs,
const std::vector<array>& trace_outputs,
const std::vector<array>& inputs,
bool shapeless) {
std::unordered_map<uintptr_t, array> trace_to_real;
for (int i = 0; i < inputs.size(); ++i) {
trace_to_real.insert({trace_inputs[i].id(), inputs[i]});
}
for (auto& a : tape) {
// Arrays in the tape without primitives are constants
// and can be used directly
if (!a.has_primitive()) {
trace_to_real.insert({a.id(), a});
} else {
// Find real inputs
std::vector<array> real_inputs;
for (auto& in : a.inputs()) {
real_inputs.push_back(trace_to_real.at(in.id()));
}
if (a.siblings().empty()) {
auto shape =
shapeless ? a.primitive().output_shapes(real_inputs)[0] : a.shape();
auto real_a = array(
std::move(shape),
a.dtype(),
a.primitive_ptr(),
std::move(real_inputs));
trace_to_real.insert({a.id(), std::move(real_a)});
} else {
// Ensure the order is correct for multi-output primitives
std::vector<Dtype> types;
auto trace_out = a.outputs();
for (auto& o : trace_out) {
types.push_back(o.dtype());
}
std::vector<std::vector<int>> shapes;
if (shapeless) {
shapes = a.primitive().output_shapes(real_inputs);
} else {
for (auto& o : trace_out) {
shapes.push_back(o.shape());
}
}
auto real_out =
array::make_arrays(shapes, types, a.primitive_ptr(), real_inputs);
for (int i = 0; i < trace_out.size(); ++i) {
trace_to_real.insert({trace_out[i].id(), std::move(real_out[i])});
}
}
}
}
std::vector<array> outputs;
for (auto& o : trace_outputs) {
outputs.push_back(trace_to_real.at(o.id()));
}
return outputs;
}
void compile_validate_shapeless(const std::vector<array>& tape) {
for (auto& t : tape) {
if (!t.has_primitive()) {
continue;
}
auto& p = t.primitive();
if (allows_shapeless(p)) {
continue;
}
std::ostringstream msg;
msg << "[compile] Cannot compile primitive ";
p.print(msg);
msg << " with shapeless enabled.";
throw std::invalid_argument(msg.str());
}
}
std::function<std::vector<array>(const std::vector<array>&)> compile(
const std::function<std::vector<array>(const std::vector<array>&)>& fun,
size_t fun_id,
bool shapeless /* = false */,
std::vector<uint64_t> constants /* = {} */) {
if (compile_mode() == CompileMode::disabled ||
!(compile_available_for_device(default_device()))) {
return fun;
}
return [fun, fun_id, shapeless, constants = std::move(constants)](
const std::vector<array>& inputs) {
// If the inputs are tracers, trace the original graph
if (std::any_of(inputs.begin(), inputs.end(), [](auto& in) {
return in.is_tracer();
})) {
return fun(inputs);
}
// Find a cache entry with the correct inputs
auto& entry = compiler_cache().find(fun_id, inputs, shapeless, constants);
// No matching cache entry existed, so compile
if (entry.empty) {
// Mark the entry as not empty since we are about to fill it
entry.empty = false;
// Set the constants
entry.constants = std::move(constants);
// Trace to build the graph
std::tie(entry.inputs, entry.outputs) = compile_trace(fun, inputs);
// DFS the graph and get a tape, and a map of array id to (parent,
// position in parent inputs)
std::unordered_map<uintptr_t, std::vector<std::pair<array, int>>>
parents_map;
std::tie(entry.tape, parents_map) =
compile_dfs(entry.inputs, entry.outputs);
// Simplify the tape
if (compile_mode() != CompileMode::no_simplify) {
compile_simplify(
entry.tape, parents_map, entry.outputs, /* passes */ 3);
}
// Kernel fusion to generate Compiled primitives. The tape and
// new outputs must be updated accordingly
if (compile_mode() != CompileMode::no_fuse) {
compile_fuse(entry.tape, parents_map, entry.inputs, entry.outputs);
}
if (shapeless) {
compile_validate_shapeless(entry.tape);
}
}
// At this point we must have a tape, now replace the placeholders
// with real arrays that can be evaluated
return compile_replace(
entry.tape, entry.inputs, entry.outputs, inputs, shapeless);
};
}
void compile_erase(size_t fun_id) {
detail::compiler_cache().erase(fun_id);
}
} // namespace detail
std::function<std::vector<array>(const std::vector<array>&)> compile(
const std::function<std::vector<array>(const std::vector<array>&)>& fun,
bool shapeless /* false */) {
if (detail::compile_mode() == CompileMode::disabled) {
return fun;
}
auto fun_id = detail::getAddress(fun);
return detail::compile(fun, fun_id, shapeless);
}
void disable_compile() {
detail::compile_mode() = CompileMode::disabled;
}
void enable_compile() {
detail::compile_mode() = CompileMode::enabled;
}
void set_compile_mode(CompileMode mode) {
detail::compile_mode() = mode;
}
} // namespace mlx::core