mlx/mlx/linalg.cpp
Arkar Min Aung f2c731c29b feat: Enable GPU support in linalg SVD interface
- Remove CPU-only restriction from linalg::svd function
- Allow SVD operations to run on GPU devices
- Add documentation noting Metal GPU acceleration support for float32
- Maintain backward compatibility with existing CPU usage
- Enable users to explicitly request GPU execution for SVD
2025-06-14 21:23:18 +10:00

708 lines
21 KiB
C++

// Copyright © 2023 Apple Inc.
#include <numeric>
#include <ostream>
#include <vector>
#include "mlx/linalg.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core::linalg {
void check_cpu_stream(const StreamOrDevice& s, const std::string& prefix) {
if (to_stream(s).device == Device::gpu) {
throw std::invalid_argument(
prefix +
" This op is not yet supported on the GPU. "
"Explicitly pass a CPU stream to run it.");
}
}
void check_float(Dtype dtype, const std::string& prefix) {
if (dtype != float32 && dtype != float64) {
std::ostringstream msg;
msg << prefix << " Arrays must have type float32 or float64. "
<< "Received array with type " << dtype << ".";
throw std::invalid_argument(msg.str());
}
}
void check_float_or_complex(Dtype dtype, const std::string& prefix) {
if (dtype != float32 && dtype != float64 && dtype != complex64) {
std::ostringstream msg;
msg << prefix << " Arrays must have type float32, float64 or complex64. "
<< "Received array with type " << dtype << ".";
throw std::invalid_argument(msg.str());
}
}
Dtype at_least_float(const Dtype& d) {
return issubdtype(d, inexact) ? d : promote_types(d, float32);
}
inline array l2_norm(
const array& a,
const std::vector<int>& axis,
bool keepdims,
StreamOrDevice s) {
if (issubdtype(a.dtype(), complexfloating)) {
return sqrt(sum(abs(a, s) * abs(a, s), axis, keepdims, s), s);
} else {
return sqrt(sum(square(a, s), axis, keepdims, s), s);
}
}
inline array vector_norm(
const array& a,
const double ord,
const std::vector<int>& axis,
bool keepdims,
StreamOrDevice s) {
auto dtype = at_least_float(a.dtype());
if (ord == 0.0) {
return astype(sum(not_equal(a, array(0), s), axis, keepdims, s), dtype, s);
} else if (ord == 1.0) {
return astype(sum(abs(a, s), axis, keepdims, s), dtype, s);
} else if (ord == 2.0) {
return l2_norm(a, axis, keepdims, s);
} else if (ord == std::numeric_limits<double>::infinity()) {
return astype(max(abs(a, s), axis, keepdims, s), dtype, s);
} else if (ord == -std::numeric_limits<double>::infinity()) {
return astype(min(abs(a, s), axis, keepdims, s), dtype, s);
} else {
return power(
sum(power(abs(a, s), array(ord, dtype), s), axis, keepdims, s),
array(1.0 / ord, dtype),
s);
}
}
inline array matrix_norm(
const array& a,
const double ord,
const std::vector<int>& axis,
bool keepdims,
StreamOrDevice s) {
auto dtype = at_least_float(a.dtype());
auto row_axis = axis[0];
auto col_axis = axis[1];
if (ord == -1.0) {
col_axis -= (!keepdims && col_axis > row_axis && col_axis > 0);
return astype(
min(sum(abs(a, s), row_axis, keepdims, s), col_axis, keepdims, s),
dtype,
s);
} else if (ord == 1.0) {
col_axis -= (!keepdims && col_axis > row_axis && col_axis > 0);
return astype(
max(sum(abs(a, s), row_axis, keepdims, s), col_axis, keepdims, s),
dtype,
s);
} else if (ord == std::numeric_limits<double>::infinity()) {
row_axis -= (!keepdims && row_axis > col_axis && row_axis > 0);
return astype(
max(sum(abs(a, s), col_axis, keepdims, s), row_axis, keepdims, s),
dtype,
s);
} else if (ord == -std::numeric_limits<double>::infinity()) {
row_axis -= (!keepdims && row_axis > col_axis && row_axis > 0);
return astype(
min(sum(abs(a, s), col_axis, keepdims, s), row_axis, keepdims, s),
dtype,
s);
} else if (ord == 2.0 || ord == -2.0) {
row_axis = (axis[0] < 0) ? axis[0] + a.ndim() : axis[0];
col_axis = (axis[1] < 0) ? axis[1] + a.ndim() : axis[1];
auto a_matrix = (row_axis > col_axis)
? moveaxis(moveaxis(a, row_axis, -1, s), col_axis, -1, s)
: moveaxis(moveaxis(a, col_axis, -1, s), row_axis, -2, s);
a_matrix = svd(a_matrix, false, s).at(0);
a_matrix = (ord == 2.0) ? max(a_matrix, -1, false, s)
: min(a_matrix, -1, false, s);
if (keepdims) {
std::vector<int> sorted_axes = (row_axis < col_axis)
? std::vector<int>{row_axis, col_axis}
: std::vector<int>{col_axis, row_axis};
a_matrix = expand_dims(a_matrix, sorted_axes, s);
}
return astype(a_matrix, dtype, s);
} else {
std::ostringstream msg;
msg << "[linalg::norm] Invalid ord " << ord << " for matrix norm.";
throw std::invalid_argument(msg.str());
}
}
inline array matrix_norm(
const array& a,
const std::string& ord,
const std::vector<int>& axis,
bool keepdims,
StreamOrDevice s) {
if (ord == "f" || ord == "fro") {
return l2_norm(a, axis, keepdims, s);
} else if (ord == "nuc") {
int row_axis = (axis[0] < 0) ? axis[0] + a.ndim() : axis[0];
int col_axis = (axis[1] < 0) ? axis[1] + a.ndim() : axis[1];
auto a_matrix = (row_axis > col_axis)
? moveaxis(moveaxis(a, row_axis, -1, s), col_axis, -1, s)
: moveaxis(moveaxis(a, col_axis, -1, s), row_axis, -2, s);
a_matrix = sum(svd(a_matrix, false, s).at(0), -1, false, s);
if (keepdims) {
std::vector<int> sorted_axes = (row_axis < col_axis)
? std::vector<int>{row_axis, col_axis}
: std::vector<int>{col_axis, row_axis};
a_matrix = expand_dims(a_matrix, sorted_axes, s);
}
return a_matrix;
} else {
std::ostringstream msg;
msg << "[linalg::norm] Invalid ord value '" << ord << "' for matrix norm.";
throw std::invalid_argument(msg.str());
}
}
array norm(
const array& a,
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
bool keepdims /* = false */,
StreamOrDevice s /* = {} */) {
if (!axis) {
return norm(flatten(a, s), std::vector<int>{0}, keepdims, s);
}
if (axis.value().size() > 2) {
throw std::invalid_argument(
"[linalg::norm] Received too many axes for norm.");
}
return l2_norm(a, axis.value(), keepdims, s);
}
array norm(
const array& a,
const double ord,
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
bool keepdims /* = false */,
StreamOrDevice s /* = {} */) {
std::vector<int> ax;
if (!axis) {
ax.resize(a.ndim());
std::iota(ax.begin(), ax.end(), 0);
} else {
ax = axis.value();
}
if (ax.size() == 1) {
return vector_norm(a, ord, ax, keepdims, s);
} else if (ax.size() == 2) {
return matrix_norm(a, ord, ax, keepdims, s);
} else {
throw std::invalid_argument(
"[linalg::norm] Received too many axes for norm.");
}
}
array norm(
const array& a,
const std::string& ord,
const std::optional<std::vector<int>>& axis /* = std::nullopt */,
bool keepdims /* = false */,
StreamOrDevice s /* = {} */) {
std::vector<int> ax;
if (!axis) {
ax.resize(a.ndim());
std::iota(ax.begin(), ax.end(), 0);
} else {
ax = axis.value();
}
if (ax.size() != 2) {
std::ostringstream msg;
msg << "[linalg::norm] Norm '" << ord << "' only supported for matrices,"
<< " but received " << ax.size() << " axis/axes.";
throw std::invalid_argument(msg.str());
}
return matrix_norm(a, ord, ax, keepdims, s);
}
std::pair<array, array> qr(const array& a, StreamOrDevice s /* = {} */) {
check_cpu_stream(s, "[linalg::qr]");
check_float(a.dtype(), "[linalg::qr]");
if (a.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::qr] Arrays must have >= 2 dimensions. Received array "
"with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
int k = std::min(a.shape(-2), a.shape(-1));
auto q_shape = a.shape();
q_shape.back() = k;
auto r_shape = a.shape();
r_shape[r_shape.size() - 2] = k;
auto out = array::make_arrays(
{std::move(q_shape), std::move(r_shape)},
{a.dtype(), a.dtype()},
std::make_shared<QRF>(to_stream(s)),
{astype(a, a.dtype(), s)});
return std::make_pair(out[0], out[1]);
}
std::vector<array>
svd(const array& a, bool compute_uv, StreamOrDevice s /* = {} */) {
// Note: SVD now supports Metal GPU acceleration for float32
// check_cpu_stream(s, "[linalg::svd]"); // Removed to enable GPU support
check_float(a.dtype(), "[linalg::svd]");
if (a.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::svd] Input array must have >= 2 dimensions. Received array "
"with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
const auto m = a.shape(-2);
const auto n = a.shape(-1);
const auto rank = a.ndim();
auto s_shape = a.shape();
s_shape.pop_back();
s_shape[rank - 2] = std::min(m, n);
if (!compute_uv) {
return {array(
std::move(s_shape),
std::move(a.dtype()),
std::make_shared<SVD>(to_stream(s), compute_uv),
{a})};
}
auto u_shape = a.shape();
u_shape[rank - 2] = m;
u_shape[rank - 1] = m;
auto vt_shape = a.shape();
vt_shape[rank - 2] = n;
vt_shape[rank - 1] = n;
return array::make_arrays(
{u_shape, s_shape, vt_shape},
{a.dtype(), a.dtype(), a.dtype()},
std::make_shared<SVD>(to_stream(s), compute_uv),
{a});
}
array inv_impl(const array& a, bool tri, bool upper, StreamOrDevice s) {
check_cpu_stream(s, "[linalg::inv]");
check_float(a.dtype(), "[linalg::inv]");
if (a.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::inv] Arrays must have >= 2 dimensions. Received array "
"with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (a.shape(-1) != a.shape(-2)) {
throw std::invalid_argument(
"[linalg::inv] Inverses are only defined for square matrices.");
}
return array(
a.shape(),
a.dtype(),
std::make_shared<Inverse>(to_stream(s), tri, upper),
{a});
}
array inv(const array& a, StreamOrDevice s /* = {} */) {
return inv_impl(a, /*tri=*/false, /*upper=*/true, s);
}
array tri_inv(
const array& a,
bool upper /* = false */,
StreamOrDevice s /* = {} */) {
return inv_impl(a, /*tri=*/true, upper, s);
}
array cholesky(
const array& a,
bool upper /* = false */,
StreamOrDevice s /* = {} */) {
check_cpu_stream(s, "[linalg::cholesky]");
check_float(a.dtype(), "[linalg::cholesky]");
if (a.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::cholesky] Arrays must have >= 2 dimensions. Received array "
"with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (a.shape(-1) != a.shape(-2)) {
throw std::invalid_argument(
"[linalg::cholesky] Cholesky decomposition is only defined for square "
"matrices.");
}
return array(
a.shape(),
a.dtype(),
std::make_shared<Cholesky>(to_stream(s), upper),
{a});
}
array pinv(const array& a, StreamOrDevice s /* = {} */) {
check_cpu_stream(s, "[linalg::pinv]");
check_float(a.dtype(), "[linalg::pinv]");
if (a.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::pinv] Arrays must have >= 2 dimensions. Received array "
<< "with " << a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
int m = a.shape(-2);
int n = a.shape(-1);
int k = std::min(m, n);
auto outs = linalg::svd(a, true, s);
array U = outs[0];
array S = outs[1];
array V = outs[2];
Shape starts(a.ndim(), 0);
auto ends = a.shape();
int i = a.ndim() - 2;
int j = a.ndim() - 1;
// Prepare U
ends[i] = m;
ends[j] = k;
U = swapaxes(slice(U, starts, ends, s), -1, -2, s);
// Prepare V
ends[i] = k;
ends[j] = n;
V = swapaxes(slice(V, starts, ends, s), -1, -2, s);
// Prepare S
S = expand_dims(S, -2, s);
auto rcond = 10. * std::max(m, n) * finfo(a.dtype()).eps;
auto cutoff = multiply(array(rcond, a.dtype()), max(S, -1, true, s), s);
auto rS =
where(greater(S, cutoff, s), reciprocal(S, s), array(0.0f, a.dtype()), s);
return matmul(multiply(V, rS, s), U, s);
}
array cholesky_inv(
const array& L,
bool upper /* = false */,
StreamOrDevice s /* = {} */) {
check_cpu_stream(s, "[linalg::cholesky_inv]");
check_float(L.dtype(), "[linalg::cholesky_inv]");
if (L.ndim() < 2) {
std::ostringstream msg;
msg << "[linalg::cholesky_inv] Arrays must have >= 2 dimensions. Received array "
"with "
<< L.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (L.shape(-1) != L.shape(-2)) {
throw std::invalid_argument(
"[linalg::cholesky_inv] Cholesky inverse is only defined for square "
"matrices.");
}
array L_inv = tri_inv(L, upper, s);
if (upper) {
return matmul(L_inv, swapaxes(L_inv, -1, -2, s), s);
} else {
return matmul(swapaxes(L_inv, -1, -2, s), L_inv, s);
}
}
array cross(
const array& a,
const array& b,
int axis /* = -1 */,
StreamOrDevice s /* = {} */) {
auto check_ax = [axis](const array& arr) {
if (axis >= static_cast<int>(arr.ndim()) || axis + arr.ndim() < 0) {
std::ostringstream msg;
msg << "[linalg::cross] axis " << axis << " invalid for array with "
<< arr.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (arr.shape(axis) < 2 || arr.shape(axis) > 3) {
throw std::invalid_argument(
"[linalg::cross] The specified axis must have size 2 or 3.");
}
};
check_ax(a);
check_ax(b);
bool a_2d = a.shape(axis) == 2;
bool b_2d = b.shape(axis) == 2;
auto out_type = promote_types(a.dtype(), b.dtype());
auto ashape = a.shape();
auto bshape = b.shape();
ashape[axis < 0 ? axis + a.ndim() : axis] = 3;
bshape[axis < 0 ? axis + b.ndim() : axis] = 3;
auto out_shape = broadcast_shapes(ashape, bshape);
if (axis < 0) {
axis += out_shape.size();
}
out_shape[axis] = a_2d ? 2 : 3;
auto a_ = broadcast_to(astype(a, out_type, s), out_shape, s);
out_shape[axis] = b_2d ? 2 : 3;
auto b_ = broadcast_to(astype(b, out_type, s), out_shape, s);
auto a_splits = split(a_, a_2d ? 2 : 3, axis);
auto b_splits = split(b_, b_2d ? 2 : 3, axis);
std::vector<array> outputs;
if (a_2d && b_2d) {
auto z = zeros_like(a_splits[0], s);
outputs.push_back(z);
outputs.push_back(z);
} else if (b_2d) {
outputs.push_back(negative(multiply(a_splits[2], b_splits[1], s), s));
outputs.push_back(multiply(a_splits[2], b_splits[0], s));
} else if (a_2d) {
outputs.push_back(multiply(a_splits[1], b_splits[2], s));
outputs.push_back(negative(multiply(a_splits[0], b_splits[2], s), s));
} else {
outputs.push_back(subtract(
multiply(a_splits[1], b_splits[2], s),
multiply(a_splits[2], b_splits[1], s),
s));
outputs.push_back(subtract(
multiply(a_splits[2], b_splits[0], s),
multiply(a_splits[0], b_splits[2], s),
s));
}
outputs.push_back(subtract(
multiply(a_splits[0], b_splits[1], s),
multiply(a_splits[1], b_splits[0], s),
s));
return concatenate(outputs, axis, s);
}
void validate_eig(
const array& a,
const StreamOrDevice& stream,
const std::string fname) {
check_cpu_stream(stream, fname);
check_float_or_complex(a.dtype(), fname);
if (a.ndim() < 2) {
std::ostringstream msg;
msg << fname << " Arrays must have >= 2 dimensions. Received array with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (a.shape(-1) != a.shape(-2)) {
throw std::invalid_argument(fname + " Only defined for square matrices.");
}
}
array eigvalsh(
const array& a,
std::string UPLO /* = "L" */,
StreamOrDevice s /* = {} */) {
validate_eig(a, s, "[linalg::eigvalsh]");
Shape out_shape(a.shape().begin(), a.shape().end() - 1);
Dtype eigval_type = a.dtype() == complex64 ? float32 : a.dtype();
return array(
std::move(out_shape),
eigval_type,
std::make_shared<Eigh>(to_stream(s), UPLO, false),
{a});
}
std::pair<array, array> eigh(
const array& a,
std::string UPLO /* = "L" */,
StreamOrDevice s /* = {} */) {
validate_eig(a, s, "[linalg::eigh]");
Dtype eigval_type = a.dtype() == complex64 ? float32 : a.dtype();
auto out = array::make_arrays(
{Shape(a.shape().begin(), a.shape().end() - 1), a.shape()},
{eigval_type, a.dtype()},
std::make_shared<Eigh>(to_stream(s), UPLO, true),
{a});
return std::make_pair(out[0], out[1]);
}
array eigvals(const array& a, StreamOrDevice s /* = {} */) {
validate_eig(a, s, "[linalg::eigvals]");
Shape out_shape(a.shape().begin(), a.shape().end() - 1);
return array(
std::move(out_shape),
complex64,
std::make_shared<Eig>(to_stream(s), false),
{a});
}
std::pair<array, array> eig(const array& a, StreamOrDevice s /* = {} */) {
validate_eig(a, s, "[linalg::eig]");
auto out = array::make_arrays(
{Shape(a.shape().begin(), a.shape().end() - 1), a.shape()},
{complex64, complex64},
std::make_shared<Eig>(to_stream(s), true),
{a});
return std::make_pair(out[0], out[1]);
}
void validate_lu(
const array& a,
const StreamOrDevice& stream,
const std::string& fname) {
check_cpu_stream(stream, fname);
check_float(a.dtype(), fname);
if (a.ndim() < 2) {
std::ostringstream msg;
msg << fname
<< " Arrays must have >= 2 dimensions. Received array "
"with "
<< a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
}
std::vector<array> lu_helper(const array& a, StreamOrDevice s /* = {} */) {
int m = a.shape()[a.shape().size() - 2];
int n = a.shape()[a.shape().size() - 1];
Shape pivots_shape(a.shape().begin(), a.shape().end() - 2);
pivots_shape.push_back(std::min(m, n));
Shape row_idx_shape(a.shape().begin(), a.shape().end() - 1);
return array::make_arrays(
{a.shape(), pivots_shape, row_idx_shape},
{a.dtype(), uint32, uint32},
std::make_shared<LUF>(to_stream(s)),
{astype(a, a.dtype(), s)});
}
std::vector<array> lu(const array& a, StreamOrDevice s /* = {} */) {
validate_lu(a, s, "[linalg::lu]");
auto out = lu_helper(a, s);
auto& LU = out[0];
auto& row_pivots = out[2];
auto L = tril(LU, /* k = */ -1, s);
auto U = triu(LU, /* k = */ 0, s);
int M = a.shape(-2);
int N = a.shape(-1);
int K = std::min(M, N);
if (N != K) {
auto start = Shape(L.ndim(), 0);
auto stop = L.shape();
stop.back() = K;
L = slice(L, std::move(start), std::move(stop), s);
} else if (M != K) {
auto start = Shape(U.ndim(), 0);
auto stop = U.shape();
stop[U.ndim() - 2] = K;
U = slice(U, std::move(start), std::move(stop), s);
}
L = add(L, eye(M, K, s), s);
return {row_pivots, L, U};
}
std::pair<array, array> lu_factor(const array& a, StreamOrDevice s /* = {} */) {
validate_lu(a, s, "[linalg::lu_factor]");
auto out = lu_helper(a, s);
return std::make_pair(out[0], out[1]);
}
void validate_solve(
const array& a,
const array& b,
const StreamOrDevice& stream,
const std::string& fname) {
check_cpu_stream(stream, fname);
if (a.ndim() < 2) {
std::ostringstream msg;
msg << fname << " First input must have >= 2 dimensions. "
<< "Received array with " << a.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (b.ndim() < 1) {
std::ostringstream msg;
msg << fname << " Second input must have >= 1 dimensions. "
<< "Received array with " << b.ndim() << " dimensions.";
throw std::invalid_argument(msg.str());
}
if (a.shape(-1) != a.shape(-2)) {
std::ostringstream msg;
msg << fname << " First input must be a square matrix. "
<< "Received array with shape " << a.shape() << ".";
throw std::invalid_argument(msg.str());
}
int lastDim = b.ndim() > 1 ? -2 : -1;
if (a.shape(-1) != b.shape(lastDim)) {
std::ostringstream msg;
msg << fname << " Last dimension of first input with shape " << a.shape()
<< " must match second to last dimension of"
<< " second input with shape " << b.shape() << ".";
throw std::invalid_argument(msg.str());
}
auto out_type = promote_types(a.dtype(), b.dtype());
if (out_type != float32 && out_type != float64) {
std::ostringstream msg;
msg << fname
<< " Input arrays must promote to float32 or float64. "
" Received arrays with type "
<< a.dtype() << " and " << b.dtype() << ".";
throw std::invalid_argument(msg.str());
}
}
array solve(const array& a, const array& b, StreamOrDevice s /* = {} */) {
validate_solve(a, b, s, "[linalg::solve]");
// P, L, U matrices
const auto luf = lu(a, s);
auto perm = argsort(luf[0], -1, s);
int take_axis = -1;
if (b.ndim() >= 2) {
perm = expand_dims(perm, -1, s);
take_axis -= 1;
}
auto pb = take_along_axis(b, perm, take_axis);
auto y = solve_triangular(luf[1], pb, /* upper = */ false, s);
return solve_triangular(luf[2], y, /* upper = */ true, s);
}
array solve_triangular(
const array& a,
const array& b,
bool upper /* = false */,
StreamOrDevice s /* = {} */) {
validate_solve(a, b, s, "[linalg::solve_triangular]");
auto a_inv = tri_inv(a, upper, s);
return matmul(a_inv, b, s);
}
} // namespace mlx::core::linalg