mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 09:21:16 +08:00
152 lines
4.7 KiB
C++
152 lines
4.7 KiB
C++
// Copyright © 2024 Apple Inc.
|
|
|
|
#include "mlx/backend/common/ternary.h"
|
|
#include "mlx/backend/metal/device.h"
|
|
#include "mlx/backend/metal/kernels.h"
|
|
#include "mlx/backend/metal/utils.h"
|
|
#include "mlx/primitives.h"
|
|
|
|
namespace mlx::core {
|
|
|
|
void ternary_op_gpu_inplace(
|
|
const std::vector<array>& inputs,
|
|
array& out,
|
|
const std::string op,
|
|
const Stream& s) {
|
|
assert(inputs.size() == 3);
|
|
auto& a = inputs[0];
|
|
auto& b = inputs[1];
|
|
auto& c = inputs[2];
|
|
TernaryOpType topt = get_ternary_op_type(a, b, c);
|
|
|
|
if (out.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
// Try to collapse contiguous dims
|
|
auto maybe_collapse = [topt, &a, &b, &c, &out]() {
|
|
if (topt == TernaryOpType::General) {
|
|
auto [shape, strides] = collapse_contiguous_dims(a, b, c, out);
|
|
return std::make_tuple(
|
|
shape, strides[0], strides[1], strides[2], strides[3]);
|
|
} else {
|
|
Strides e;
|
|
return std::make_tuple(Shape{}, e, e, e, e);
|
|
}
|
|
};
|
|
auto [shape, strides_a, strides_b, strides_c, strides_out] = maybe_collapse();
|
|
|
|
bool large;
|
|
auto ndim = shape.size();
|
|
int work_per_thread;
|
|
if (topt == TernaryOpType::General) {
|
|
large = a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
|
|
c.data_size() > INT32_MAX || out.size() > INT32_MAX;
|
|
work_per_thread = large ? 4 : 2;
|
|
} else {
|
|
large = out.data_size() > INT32_MAX;
|
|
work_per_thread = get_work_per_thread(b.dtype());
|
|
}
|
|
std::string kernel_name;
|
|
if (topt == TernaryOpType::General) {
|
|
kernel_name = "g";
|
|
if (shape.size() <= 3) {
|
|
kernel_name += std::to_string(shape.size());
|
|
} else if (work_per_thread > 1) {
|
|
concatenate(kernel_name, "n", std::to_string(work_per_thread));
|
|
}
|
|
if (large) {
|
|
kernel_name += "large";
|
|
}
|
|
} else if (large) {
|
|
kernel_name = "v2";
|
|
} else {
|
|
kernel_name = "v";
|
|
}
|
|
concatenate(kernel_name, "_", op, type_to_name(b));
|
|
|
|
auto& d = metal::device(s.device);
|
|
|
|
auto kernel = get_ternary_kernel(d, kernel_name, out.dtype(), op);
|
|
|
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
compute_encoder.set_compute_pipeline_state(kernel);
|
|
compute_encoder.set_input_array(a, 0);
|
|
compute_encoder.set_input_array(b, 1);
|
|
compute_encoder.set_input_array(c, 2);
|
|
compute_encoder.set_output_array(out, 3);
|
|
|
|
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
|
if (topt == TernaryOpType::General) {
|
|
// Launch up to 3D grid of threads
|
|
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
|
|
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
|
|
size_t rest = out.size() / (dim0 * dim1);
|
|
|
|
if (ndim > 3) {
|
|
compute_encoder.set_vector_bytes(shape, 4);
|
|
compute_encoder.set_vector_bytes(strides_a, 5);
|
|
compute_encoder.set_vector_bytes(strides_b, 6);
|
|
compute_encoder.set_vector_bytes(strides_c, 7);
|
|
|
|
compute_encoder.set_bytes(ndim, 8);
|
|
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
|
|
} else {
|
|
// The shape is implicit in the grid for <= 3D
|
|
compute_encoder.set_vector_bytes(strides_a, 4);
|
|
compute_encoder.set_vector_bytes(strides_b, 5);
|
|
compute_encoder.set_vector_bytes(strides_c, 6);
|
|
}
|
|
|
|
if (thread_group_size != 1024) {
|
|
throw std::runtime_error("[Metal::ternary] Must use 1024 sized block");
|
|
}
|
|
MTL::Size group_dims = get_block_dims(dim0, dim1, rest);
|
|
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
|
|
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
} else {
|
|
// Launch a 1D or 2D grid of threads
|
|
size_t nthreads = ceildiv(out.data_size(), work_per_thread);
|
|
if (thread_group_size > nthreads) {
|
|
thread_group_size = nthreads;
|
|
}
|
|
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
|
MTL::Size grid_dims;
|
|
if (large) {
|
|
compute_encoder.set_bytes<int64_t>(out.data_size(), 4);
|
|
grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread);
|
|
} else {
|
|
compute_encoder.set_bytes<int>(out.data_size(), 4);
|
|
grid_dims = MTL::Size(nthreads, 1, 1);
|
|
}
|
|
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
}
|
|
}
|
|
|
|
void ternary_op_gpu(
|
|
const std::vector<array>& inputs,
|
|
array& out,
|
|
const std::string op,
|
|
const Stream& s) {
|
|
auto& a = inputs[0];
|
|
auto& b = inputs[1];
|
|
auto& c = inputs[2];
|
|
TernaryOpType topt = get_ternary_op_type(a, b, c);
|
|
set_ternary_op_output_data(a, b, c, out, topt);
|
|
ternary_op_gpu_inplace(inputs, out, op, s);
|
|
}
|
|
|
|
void ternary_op_gpu(
|
|
const std::vector<array>& inputs,
|
|
array& out,
|
|
const std::string op) {
|
|
auto& s = out.primitive().stream();
|
|
ternary_op_gpu(inputs, out, op, s);
|
|
}
|
|
|
|
void Select::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
ternary_op_gpu(inputs, out, get_primitive_string(this));
|
|
}
|
|
|
|
} // namespace mlx::core
|