mlx/mlx/backend/metal/ternary.cpp
Awni Hannun 825124af8f
fix bw for elementwise ops (#2151)
* fix bw for elementwise ops

* add compile

* fix

* fix

* fix

* fix
2025-05-05 06:15:04 -07:00

152 lines
4.7 KiB
C++

// Copyright © 2024 Apple Inc.
#include "mlx/backend/common/ternary.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h"
namespace mlx::core {
void ternary_op_gpu_inplace(
const std::vector<array>& inputs,
array& out,
const std::string op,
const Stream& s) {
assert(inputs.size() == 3);
auto& a = inputs[0];
auto& b = inputs[1];
auto& c = inputs[2];
TernaryOpType topt = get_ternary_op_type(a, b, c);
if (out.size() == 0) {
return;
}
// Try to collapse contiguous dims
auto maybe_collapse = [topt, &a, &b, &c, &out]() {
if (topt == TernaryOpType::General) {
auto [shape, strides] = collapse_contiguous_dims(a, b, c, out);
return std::make_tuple(
shape, strides[0], strides[1], strides[2], strides[3]);
} else {
Strides e;
return std::make_tuple(Shape{}, e, e, e, e);
}
};
auto [shape, strides_a, strides_b, strides_c, strides_out] = maybe_collapse();
bool large;
auto ndim = shape.size();
int work_per_thread;
if (topt == TernaryOpType::General) {
large = a.data_size() > INT32_MAX || b.data_size() > INT32_MAX ||
c.data_size() > INT32_MAX || out.size() > INT32_MAX;
work_per_thread = large ? 4 : 2;
} else {
large = out.data_size() > INT32_MAX;
work_per_thread = get_work_per_thread(b.dtype());
}
std::string kernel_name;
if (topt == TernaryOpType::General) {
kernel_name = "g";
if (shape.size() <= 3) {
kernel_name += std::to_string(shape.size());
} else if (work_per_thread > 1) {
concatenate(kernel_name, "n", std::to_string(work_per_thread));
}
if (large) {
kernel_name += "large";
}
} else if (large) {
kernel_name = "v2";
} else {
kernel_name = "v";
}
concatenate(kernel_name, "_", op, type_to_name(b));
auto& d = metal::device(s.device);
auto kernel = get_ternary_kernel(d, kernel_name, out.dtype(), op);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(a, 0);
compute_encoder.set_input_array(b, 1);
compute_encoder.set_input_array(c, 2);
compute_encoder.set_output_array(out, 3);
auto thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (topt == TernaryOpType::General) {
// Launch up to 3D grid of threads
size_t dim0 = ndim > 0 ? shape[ndim - 1] : 1;
size_t dim1 = ndim > 1 ? shape[ndim - 2] : 1;
size_t rest = out.size() / (dim0 * dim1);
if (ndim > 3) {
compute_encoder.set_vector_bytes(shape, 4);
compute_encoder.set_vector_bytes(strides_a, 5);
compute_encoder.set_vector_bytes(strides_b, 6);
compute_encoder.set_vector_bytes(strides_c, 7);
compute_encoder.set_bytes(ndim, 8);
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
} else {
// The shape is implicit in the grid for <= 3D
compute_encoder.set_vector_bytes(strides_a, 4);
compute_encoder.set_vector_bytes(strides_b, 5);
compute_encoder.set_vector_bytes(strides_c, 6);
}
if (thread_group_size != 1024) {
throw std::runtime_error("[Metal::ternary] Must use 1024 sized block");
}
MTL::Size group_dims = get_block_dims(dim0, dim1, rest);
MTL::Size grid_dims = MTL::Size(dim0, dim1, rest);
compute_encoder.dispatch_threads(grid_dims, group_dims);
} else {
// Launch a 1D or 2D grid of threads
size_t nthreads = ceildiv(out.data_size(), work_per_thread);
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
MTL::Size grid_dims;
if (large) {
compute_encoder.set_bytes<int64_t>(out.data_size(), 4);
grid_dims = get_2d_grid_dims(out.shape(), out.strides(), work_per_thread);
} else {
compute_encoder.set_bytes<int>(out.data_size(), 4);
grid_dims = MTL::Size(nthreads, 1, 1);
}
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
}
void ternary_op_gpu(
const std::vector<array>& inputs,
array& out,
const std::string op,
const Stream& s) {
auto& a = inputs[0];
auto& b = inputs[1];
auto& c = inputs[2];
TernaryOpType topt = get_ternary_op_type(a, b, c);
set_ternary_op_output_data(a, b, c, out, topt);
ternary_op_gpu_inplace(inputs, out, op, s);
}
void ternary_op_gpu(
const std::vector<array>& inputs,
array& out,
const std::string op) {
auto& s = out.primitive().stream();
ternary_op_gpu(inputs, out, op, s);
}
void Select::eval_gpu(const std::vector<array>& inputs, array& out) {
ternary_op_gpu(inputs, out, get_primitive_string(this));
}
} // namespace mlx::core