mirror of
https://github.com/ml-explore/mlx.git
synced 2025-07-13 19:51:13 +08:00
231 lines
7.4 KiB
Python
231 lines
7.4 KiB
Python
# Copyright © 2023 Apple Inc.
|
|
|
|
import math
|
|
from typing import Optional
|
|
|
|
import mlx.core as mx
|
|
from mlx.nn.layers.base import Module
|
|
|
|
|
|
class RoPE(Module):
|
|
"""Implements the rotary positional encoding.
|
|
|
|
The traditional implementation rotates consecutive pairs of elements in the
|
|
feature dimension while the default implementation rotates pairs with
|
|
stride half the feature dimensions for efficiency.
|
|
|
|
For more details see `RoFormer: Enhanced Transformer with Rotary Position
|
|
Embedding <https://arxiv.org/abs/2104.09864>`_.
|
|
|
|
Args:
|
|
dims (int): The feature dimensions to be rotated. If the input feature
|
|
is larger than dims then the rest is left unchanged.
|
|
traditional (bool, optional): If set to True choose the traditional
|
|
implementation which is slightly less efficient. Default: ``False``.
|
|
base (float, optional): The base used to compute angular frequency for
|
|
each dimension in the positional encodings. Default: ``10000``.
|
|
scale (float, optional): The scale used to scale the positions. Default: ``1.0``.
|
|
|
|
Attributes:
|
|
_cos_sin_theta_key (tuple): Cached key for the precomputed cosine and sine values.
|
|
_cos_sin_theta_value (tuple): Cached cosine and sine values.
|
|
"""
|
|
|
|
_cos_sin_theta_key = None
|
|
_cos_sin_theta_value = None
|
|
|
|
def __init__(
|
|
self,
|
|
dims: int,
|
|
traditional: bool = False,
|
|
base: float = 10000,
|
|
scale: float = 1.0,
|
|
):
|
|
super().__init__()
|
|
self.dims = dims
|
|
self.traditional = traditional
|
|
self.base = base
|
|
self.scale = scale
|
|
|
|
def _extra_repr(self):
|
|
return f"{self.dims}, traditional={self.traditional}"
|
|
|
|
def _compute_rope(self, costheta, sintheta, x):
|
|
x1 = x[..., : self.dims // 2]
|
|
x2 = x[..., self.dims // 2 : self.dims]
|
|
rx1 = x1 * costheta - x2 * sintheta
|
|
rx2 = x1 * sintheta + x2 * costheta
|
|
|
|
if self.dims < x.shape[-1]:
|
|
rx = mx.concatenate([rx1, rx2, x[..., self.dims :]], axis=-1)
|
|
else:
|
|
rx = mx.concatenate([rx1, rx2], axis=-1)
|
|
|
|
return rx
|
|
|
|
def _compute_traditional_rope(self, costheta, sintheta, x):
|
|
x1 = x[..., ::2]
|
|
x2 = x[..., 1::2]
|
|
rx1 = x1 * costheta - x2 * sintheta
|
|
rx2 = x1 * sintheta + x2 * costheta
|
|
|
|
if self.dims < x.shape[-1]:
|
|
raise NotImplementedError(
|
|
"RoPE doesn't implement partial traditional application"
|
|
)
|
|
|
|
rx = mx.concatenate([rx1[..., None], rx2[..., None]], axis=-1)
|
|
|
|
return rx
|
|
|
|
def __call__(self, x, offset: int = 0):
|
|
shape = x.shape
|
|
x = mx.reshape(x, (-1, shape[-2], shape[-1]))
|
|
N = x.shape[1] + offset
|
|
costheta, sintheta = RoPE.create_cos_sin_theta(
|
|
N, self.dims, offset=offset, base=self.base, scale=self.scale, dtype=x.dtype
|
|
)
|
|
|
|
rope = (
|
|
self._compute_traditional_rope if self.traditional else self._compute_rope
|
|
)
|
|
rx = rope(costheta, sintheta, x)
|
|
|
|
return mx.reshape(rx, shape)
|
|
|
|
@classmethod
|
|
def create_cos_sin_theta(
|
|
cls,
|
|
N: int,
|
|
D: int,
|
|
offset: int = 0,
|
|
base: float = 10000,
|
|
scale: float = 1.0,
|
|
dtype=mx.float32,
|
|
):
|
|
if (N, D, offset, base, scale, dtype) != cls._cos_sin_theta_key:
|
|
half_D = D // 2
|
|
positions = mx.arange(offset, N, dtype=dtype) * scale
|
|
freqs = mx.exp(-mx.arange(0.0, half_D, dtype=dtype) * (math.log(base) / half_D))
|
|
theta = mx.reshape(positions, (-1, 1)) * mx.reshape(freqs, (1, -1))
|
|
cls._cos_sin_theta_key = (N, D, offset, base, scale, dtype)
|
|
cls._cos_sin_theta_value = (mx.cos(theta), mx.sin(theta))
|
|
return cls._cos_sin_theta_value
|
|
|
|
|
|
class SinusoidalPositionalEncoding(Module):
|
|
r"""Implements sinusoidal positional encoding.
|
|
|
|
For more details see the paper `Attention Is All You Need
|
|
<https://arxiv.org/abs/1706.03762>`_.
|
|
|
|
Args:
|
|
dims (int): The dimensionality of the resulting positional embeddings.
|
|
min_freq (float, optional): The minimum frequency expected. Default:
|
|
``0.0001``.
|
|
max_freq (float, optional): The maximum frequency expected. Default:
|
|
``1``.
|
|
scale (float, optional): A multiplicative scale for the embeddings.
|
|
Default: ``sqrt(dims//2)``.
|
|
cos_first (bool, optional): If ``True`` embed using ``[cos(x); sin(x)]``
|
|
instead of the reverse. Default: ``False``.
|
|
full_turns (bool, optional): If ``True`` multiply the frequencies with
|
|
:math:`2\pi`. Default: ``False``.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
dims: int,
|
|
min_freq: float = 0.0001,
|
|
max_freq: float = 1,
|
|
scale: Optional[float] = None,
|
|
cos_first: bool = False,
|
|
full_turns: bool = False,
|
|
):
|
|
super().__init__()
|
|
|
|
one_zero = 1 - mx.arange(0, dims // 2) / (dims // 2 - 1)
|
|
min_freq = math.log(min_freq)
|
|
max_freq = math.log(max_freq)
|
|
|
|
# Start with underscore so it is not included in the parameters
|
|
self._sigmas = mx.exp(one_zero * (max_freq - min_freq) + min_freq)
|
|
if full_turns:
|
|
self._sigmas = self._sigmas * (2 * math.pi)
|
|
|
|
# Save some constants that define the implementation
|
|
self.scale = scale or (2 / dims) ** 0.5
|
|
self.cos_first = cos_first
|
|
|
|
def __call__(self, x):
|
|
y = x[..., None] * self._sigmas
|
|
cosy = mx.cos(y)
|
|
siny = mx.sin(y)
|
|
|
|
if self.cos_first:
|
|
y = mx.concatenate([cosy, siny], axis=-1)
|
|
else:
|
|
y = mx.concatenate([siny, cosy], axis=-1)
|
|
|
|
if self.scale != 1:
|
|
y = y * self.scale
|
|
|
|
return y
|
|
|
|
|
|
class ALiBi(Module):
|
|
_alibi_mask_key = None
|
|
_alibi_mask = None
|
|
|
|
@classmethod
|
|
def create_alibi_matrix(
|
|
cls,
|
|
q_sequence_length: int,
|
|
k_sequence_length: int,
|
|
num_heads: int,
|
|
offset: int,
|
|
dtype=mx.float32,
|
|
):
|
|
if (
|
|
q_sequence_length,
|
|
k_sequence_length,
|
|
num_heads,
|
|
offset,
|
|
dtype,
|
|
) != cls._alibi_mask_key:
|
|
x1 = mx.arange(offset, q_sequence_length)
|
|
x2 = mx.arange(0, k_sequence_length)
|
|
distance_matrix = -mx.abs(
|
|
mx.expand_dims(x1[:, None] - x2[None, :], axis=(0, 1))
|
|
)
|
|
alibi_slope = ALiBi.create_alibi_slope(num_heads=num_heads)
|
|
alibi_mask = (distance_matrix * alibi_slope).astype(dtype)
|
|
cls._alibi_mask_key = (
|
|
q_sequence_length,
|
|
k_sequence_length,
|
|
num_heads,
|
|
offset,
|
|
dtype,
|
|
)
|
|
cls._alibi_mask = alibi_mask
|
|
|
|
return cls._alibi_mask
|
|
|
|
@staticmethod
|
|
def create_alibi_slope(num_heads):
|
|
x = (2**8) ** (1 / num_heads)
|
|
out = mx.power(x, -mx.arange(1, num_heads + 1))
|
|
return mx.expand_dims(out, axis=(-1, -2))
|
|
|
|
def __call__(self, attention_scores, offset=0, mask=None):
|
|
alibi_mask = ALiBi.create_alibi_matrix(
|
|
q_sequence_length=attention_scores.shape[-2] + offset,
|
|
k_sequence_length=attention_scores.shape[-1],
|
|
num_heads=attention_scores.shape[1],
|
|
offset=offset,
|
|
dtype=attention_scores.dtype,
|
|
)
|
|
if mask is not None:
|
|
alibi_mask = alibi_mask + mask
|
|
return attention_scores + alibi_mask
|