mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			285 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			285 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023 Apple Inc.
 | |
| 
 | |
| #!/usr/bin/env python
 | |
| 
 | |
| import argparse
 | |
| import re
 | |
| from pathlib import Path
 | |
| from subprocess import run
 | |
| 
 | |
| BENCH_MLX = Path(__file__).parent / "bench_mlx.py"
 | |
| BENCH_TORCH = Path(__file__).parent / "bench_torch.py"
 | |
| 
 | |
| 
 | |
| def run_or_raise(*args, **kwargs):
 | |
|     try:
 | |
|         result = run(*args, capture_output=True, **kwargs)
 | |
|         return float(result.stdout)
 | |
|     except ValueError:
 | |
|         raise ValueError(
 | |
|             f"stdout: {result.stdout.decode()}\nstderr: {result.stderr.decode()}"
 | |
|         )
 | |
| 
 | |
| 
 | |
| def compare(args):
 | |
|     t_mlx = run_or_raise(["python", BENCH_MLX] + args)
 | |
|     t_torch = run_or_raise(["python", BENCH_TORCH] + args)
 | |
| 
 | |
|     print((t_torch - t_mlx) / t_torch, " ".join(args), sep="\t")
 | |
| 
 | |
| 
 | |
| def compare_mlx_dtypes(args, dt1, dt2):
 | |
|     t_mlx_dt1 = run_or_raise(["python", BENCH_MLX] + args + ["--dtype", dt1])
 | |
|     t_mlx_dt2 = run_or_raise(["python", BENCH_MLX] + args + ["--dtype", dt2])
 | |
| 
 | |
|     print((t_mlx_dt2 - t_mlx_dt1) / t_mlx_dt2, " ".join(args), sep="\t")
 | |
| 
 | |
| 
 | |
| def make_regex_search(regexes):
 | |
|     compiled_regexes = list(map(re.compile, regexes))
 | |
| 
 | |
|     def search(x):
 | |
|         return (c.search(x) is not None for c in compiled_regexes)
 | |
| 
 | |
|     return search
 | |
| 
 | |
| 
 | |
| def make_predicate(positive_filter, negative_filter):
 | |
|     if positive_filter is not None:
 | |
|         positive_filter_search = make_regex_search(positive_filter)
 | |
|         positive_filter = lambda x: all(positive_filter_search(x))
 | |
|     else:
 | |
|         positive_filter = lambda x: True
 | |
| 
 | |
|     if negative_filter is not None:
 | |
|         negative_filter_search = make_regex_search(negative_filter)
 | |
|         negative_filter = lambda x: not any(negative_filter_search(x))
 | |
|     else:
 | |
|         negative_filter = lambda x: True
 | |
| 
 | |
|     def predicate(x):
 | |
|         return positive_filter(x) and negative_filter(x)
 | |
| 
 | |
|     return predicate
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     parser = argparse.ArgumentParser(description="Run comparisons against PyTorch")
 | |
|     parser.add_argument(
 | |
|         "--filter", "-f", help="Regex filter to select benchmarks", nargs="+"
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--negative_filter", "-n", help="Regex filter to remove benchmarks", nargs="+"
 | |
|     )
 | |
|     parser.add_argument(
 | |
|         "--mlx_dtypes",
 | |
|         "-d",
 | |
|         help="Compare mlx benchmarks between the 2 provided data types",
 | |
|         nargs=2,
 | |
|     )
 | |
|     args, rest = parser.parse_known_args()
 | |
| 
 | |
|     _filter = make_predicate(args.filter, args.negative_filter)
 | |
| 
 | |
|     if args.mlx_dtypes:
 | |
|         compare_filtered = lambda x: (
 | |
|             compare_mlx_dtypes(x.split() + rest, args.mlx_dtypes[0], args.mlx_dtypes[1])
 | |
|             if _filter(x)
 | |
|             else None
 | |
|         )
 | |
|     else:
 | |
|         compare_filtered = lambda x: compare(x.split() + rest) if _filter(x) else None
 | |
| 
 | |
|     # Binary ops
 | |
|     compare_filtered("add --size 10x1024x128 --size 1x1024x128 --cpu")
 | |
|     compare_filtered("add --size 10x1024x128 --size 1x1024x128")
 | |
|     compare_filtered("add --size 1024x128 --size 1x128 --cpu")
 | |
|     compare_filtered("add --size 1024x128 --size 1x128")
 | |
|     compare_filtered("add --size 1024x4096 --size 1x4096 --cpu")
 | |
|     compare_filtered("add --size 1024x4096 --size 1x4096")
 | |
|     compare_filtered("add --size 1024x4096 --size 1x1024 --transpose 1,0 --cpu")
 | |
|     compare_filtered("add --size 1024x4096 --size 1x1024 --transpose 1,0")
 | |
|     compare_filtered("add --size 1024x1024 --size 1024x1024 --cpu")
 | |
|     compare_filtered("add --size 1024x1024 --size 1024x1024")
 | |
|     compare_filtered("add --size 1024x1024 --size 1024x1024 --transpose 1,0 --cpu")
 | |
|     compare_filtered("add --size 1024x1024 --size 1024x1024 --transpose 1,0")
 | |
|     compare_filtered(
 | |
|         "add --size 1024x1024 --size 1024x1024 --transpose 1,0 --transpose 1,0 --cpu"
 | |
|     )
 | |
|     compare_filtered(
 | |
|         "add --size 1024x1024 --size 1024x1024 --transpose 1,0 --transpose 1,0"
 | |
|     )
 | |
| 
 | |
|     # Reduction ops
 | |
|     compare_filtered("sum_all --size 10x1024x128 --cpu")
 | |
|     compare_filtered("sum_all --size 10x1024x128")
 | |
|     compare_filtered("sum_axis --size 16x1024x128 --axis 2 --cpu")
 | |
|     compare_filtered("sum_axis --size 16x1024x128 --axis 2")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 2 --cpu")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 2")
 | |
|     compare_filtered("sum_axis --size 1024x1024 --axis 1 --cpu")
 | |
|     compare_filtered("sum_axis --size 1024x1024 --axis 1")
 | |
|     compare_filtered("sum_axis --size 1024x1024 --axis 0 --cpu")
 | |
|     compare_filtered("sum_axis --size 1024x1024 --axis 0")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 1 --cpu")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 1")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 0 --cpu")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 0")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --cpu")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 0,1")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --cpu")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 0,2")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --transpose 0,2,1 --cpu")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --transpose 0,2,1")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --transpose 0,2,1 --cpu")
 | |
|     compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --transpose 0,2,1")
 | |
|     compare_filtered("argmax --size 10x1024x128 --axis 1 --cpu")
 | |
|     compare_filtered("argmax --size 10x1024x128 --axis 1")
 | |
|     compare_filtered("argmax --size 10x1024x128 --axis 2 --cpu")
 | |
|     compare_filtered("argmax --size 10x1024x128 --axis 2")
 | |
|     compare_filtered("argmax --size 1024x1024 --axis 1 --cpu")
 | |
|     compare_filtered("argmax --size 1024x1024 --axis 1")
 | |
| 
 | |
|     # Matmul ops
 | |
|     compare_filtered("matmul_square --size 1024x1024")
 | |
|     compare_filtered("matmul_square --size 1024x1024 --cpu")
 | |
|     compare_filtered("matmul_square --size 16x1024x1024")
 | |
|     compare_filtered("matmul_square --size 16x1024x1024 --cpu")
 | |
|     compare_filtered(
 | |
|         "matmul --size 16x768x768 --size 16x768x768 --transpose= --transpose 0,2,1"
 | |
|     )
 | |
|     compare_filtered(
 | |
|         "matmul --size 16x768x768 --size 16x768x768 --transpose= --transpose 0,2,1 --cpu"
 | |
|     )
 | |
|     compare_filtered(
 | |
|         "matmul --size 16x768x128 --size 16x768x128 --transpose= --transpose 0,2,1"
 | |
|     )
 | |
|     compare_filtered(
 | |
|         "matmul --size 16x768x128 --size 16x768x128 --transpose= --transpose 0,2,1 --cpu"
 | |
|     )
 | |
|     compare_filtered("matmul --size 512x8192 --size 8192x512")
 | |
|     compare_filtered("matmul --size 512x8192 --size 8192x512 --cpu")
 | |
|     # compare_filtered("matmul --size 512x131072 --size 131072x512")
 | |
|     # compare_filtered("matmul --size 512x131072 --size 131072x512 --cpu")
 | |
|     compare_filtered("matmul --size 8192x512 --size 512x8192")
 | |
|     compare_filtered("matmul --size 8192x512 --size 512x8192 --cpu")
 | |
|     # compare_filtered("matmul --size 131072x512 --size 512x512")
 | |
|     # compare_filtered("matmul --size 131072x512 --size 512x512 --cpu")
 | |
|     compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024")
 | |
|     compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024 --cpu")
 | |
|     compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024 --fused")
 | |
|     compare_filtered(
 | |
|         "linear --size 1024x1024 --size 1024 --size 128x1024 --fused --cpu"
 | |
|     )
 | |
| 
 | |
|     # Matvec ops
 | |
|     compare_filtered("matmul --size 1x1x4096 --size 4096x4096 --cpu")
 | |
|     compare_filtered("matmul --size 1x1x4096 --size 4096x4096")
 | |
|     compare_filtered(
 | |
|         "matmul --size 1x1x4096 --size 4096x4096 --transpose= --transpose 1,0 --cpu"
 | |
|     )
 | |
|     compare_filtered(
 | |
|         "matmul --size 1x1x4096 --size 4096x4096 --transpose= --transpose 1,0"
 | |
|     )
 | |
|     compare_filtered("matmul --size 32x1x1000 --size 32x1000x128 --cpu")
 | |
|     compare_filtered("matmul --size 32x1x1000 --size 32x1000x128")
 | |
|     compare_filtered(
 | |
|         "matmul --size 32x1x1000 --size 32x128x1000 --transpose= --transpose 0,2,1 --cpu"
 | |
|     )
 | |
|     compare_filtered(
 | |
|         "matmul --size 32x1x1000 --size 32x128x1000 --transpose= --transpose 0,2,1"
 | |
|     )
 | |
| 
 | |
|     # Various ops
 | |
|     compare_filtered("softmax --size 32x16x1024 --axis 2")
 | |
|     compare_filtered("softmax --size 32x16x1024 --axis 2 --cpu")
 | |
|     compare_filtered("softmax --size 32x16x1024 --axis 2 --fused")
 | |
|     compare_filtered("softmax --size 32x16x1024 --axis 2 --fused --cpu")
 | |
|     compare_filtered("softmax --size 2x1024x1024 --axis 1")
 | |
|     compare_filtered("softmax --size 2x1024x1024 --axis 1 --cpu")
 | |
|     compare_filtered("softmax --size 2x1024x1024 --axis 1 --fused")
 | |
|     compare_filtered("softmax --size 2x1024x1024 --axis 1 --fused --cpu")
 | |
|     compare_filtered("relu --size 32x16x1024")
 | |
|     compare_filtered("relu --size 32x16x1024 --cpu")
 | |
|     compare_filtered("leaky_relu --size 32x16x1024")
 | |
|     compare_filtered("leaky_relu --size 32x16x1024 --cpu")
 | |
|     compare_filtered("elu --size 32x16x1024")
 | |
|     compare_filtered("elu --size 32x16x1024 --cpu")
 | |
|     compare_filtered("relu6 --size 32x16x1024")
 | |
|     compare_filtered("relu6 --size 32x16x1024 --cpu")
 | |
|     compare_filtered("softplus --size 32x16x1024")
 | |
|     compare_filtered("softplus --size 32x16x1024 --cpu")
 | |
|     compare_filtered("celu --size 32x16x1024")
 | |
|     compare_filtered("celu --size 32x16x1024 --cpu")
 | |
|     compare_filtered("log_sigmoid --size 32x16x1024")
 | |
|     compare_filtered("log_sigmoid --size 32x16x1024 --cpu")
 | |
|     compare_filtered("step --size 32x16x1024")
 | |
|     compare_filtered("step --size 32x16x1024 --cpu")
 | |
|     compare_filtered("selu --size 32x16x1024")
 | |
|     compare_filtered("selu --size 32x16x1024 --cpu")
 | |
|     # compare_filtered("mish --size 32x16x1024") NOTE: Torch does not implement Mish in MPS atm
 | |
|     compare_filtered("mish --size 32x16x1024 --cpu")
 | |
|     compare_filtered("prelu --size 32x16x1024")
 | |
|     compare_filtered("prelu --size 32x16x1024 --cpu")
 | |
| 
 | |
|     compare_filtered("scalar_mul --size 32x16x1024")
 | |
|     compare_filtered("scalar_mul --size 32x16x1024 --cpu")
 | |
|     compare_filtered("cross_entropy --size 256x1024")
 | |
|     compare_filtered("cross_entropy --size 256x1024 --cpu")
 | |
|     compare_filtered("logsumexp --size 1024x1024 --axis 1")
 | |
|     compare_filtered("logsumexp --size 1024x1024 --axis 1 --cpu")
 | |
|     compare_filtered("logsumexp --size 1024x1024 --axis 0")
 | |
|     compare_filtered("logsumexp --size 1024x1024 --axis 0 --cpu")
 | |
|     compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 2")
 | |
|     compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 2 --cpu")
 | |
|     compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 1")
 | |
|     compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 1 --cpu")
 | |
|     compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 0")
 | |
|     compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 0 --cpu")
 | |
|     compare_filtered("concatenate --size 32x1024x128 --size 32x16x128 --axis 1")
 | |
|     compare_filtered("concatenate --size 32x1024x128 --size 32x16x128 --axis 1 --cpu")
 | |
|     compare_filtered("concatenate --size 32x1024x128 --size 32x1x128 --axis 1")
 | |
|     compare_filtered("concatenate --size 32x1024x128 --size 32x1x128 --axis 1 --cpu")
 | |
|     compare_filtered("concatenate --size 1x32x1024x128 --size 1x32x1x128 --axis 2")
 | |
|     compare_filtered(
 | |
|         "concatenate --size 1x32x1024x128 --size 1x32x1x128 --axis 2 --cpu"
 | |
|     )
 | |
|     compare_filtered("conv1d --size 1x1000x80 --size 128x11x80")
 | |
|     compare_filtered("conv1d --size 1x1000x80 --size 128x11x80 --cpu")
 | |
|     compare_filtered("conv1d --size 16x1000x80 --size 128x11x80")
 | |
|     compare_filtered("conv1d --size 4x1000x80 --size 128x11x80 --cpu")
 | |
|     compare_filtered("conv2d --size 1x256x256x3 --size 8x3x3x3")
 | |
|     compare_filtered("conv2d --size 1x256x256x3 --size 8x3x3x3 --cpu")
 | |
|     compare_filtered("conv2d --size 16x256x256x3 --size 8x3x3x3")
 | |
|     compare_filtered("conv2d --size 4x256x256x3 --size 8x3x3x3 --cpu")
 | |
|     compare_filtered("cumsum --size 1024x1024 --axis 1 --cpu")
 | |
|     compare_filtered("cumsum --size 1024x1024 --axis 0 --cpu")
 | |
|     compare_filtered("cumsum --size 1024x1024 --axis 1")
 | |
|     compare_filtered("cumsum --size 1024x1024 --axis 0")
 | |
|     compare_filtered("cumsum --size 128x1024 --axis 1")
 | |
|     compare_filtered("cumsum --size 128x1024 --axis 0")
 | |
|     compare_filtered("cumsum --size 1024x4096 --axis 1")
 | |
|     compare_filtered("cumsum --size 1024x4096 --axis 0")
 | |
|     compare_filtered("cumsum --size 128x4096 --axis 1")
 | |
|     compare_filtered("cumsum --size 128x4096 --axis 0")
 | |
|     compare_filtered("cumsum --size 1024x7777 --axis 1")
 | |
|     compare_filtered("cumsum --size 1024x7777 --axis 0")
 | |
|     compare_filtered("cumsum --size 128x7777 --axis 1")
 | |
|     compare_filtered("cumsum --size 128x7777 --axis 0")
 | |
|     compare_filtered("cumsum --size 32768x128 --axis 1")
 | |
|     compare_filtered("cumsum --size 32768x128 --axis 0")
 | |
| 
 | |
|     compare_filtered("sort --size 1024x1024 --axis 0")
 | |
|     compare_filtered("sort --size 1024x1024 --axis 1")
 | |
|     compare_filtered("sort --size 32768x128 --axis 0")
 | |
|     compare_filtered("sort --size 32768x128 --axis 1")
 | |
|     compare_filtered("sort --size 128x128 --axis 0 --cpu")
 | |
|     compare_filtered("sort --size 128x128 --axis 1 --cpu")
 | |
| 
 | |
|     compare_filtered("topk --size 1024x1024 --axis 0")
 | |
|     compare_filtered("topk --size 1024x1024 --axis 1")
 | |
|     compare_filtered("topk --size 32768x128 --axis 0")
 | |
|     compare_filtered("topk --size 32768x128 --axis 1")
 | |
|     compare_filtered("topk --size 128x128 --axis 0 --cpu")
 | |
|     compare_filtered("topk --size 128x128 --axis 1 --cpu")
 | 
