mlx/mlx/backend/metal/conv.cpp
Jagrit Digani fddb6933e1
Collection of refactors (#2274)
* Refactor gemv into a function

* Refactor splitk step 1

* Refactor split k axpby

* Rearrange steel_gemm_regular

* Redirect steel_gemm_regular

* Add axpby routing to steel_matmul_regular

* Refactor AddMM step 1

* Redirect steel_gemm

* Update addmm

* Comments and format

* Some cleanup

* Add architecture gen to device

* Update no copy condition in normalization to account for axis size 1
2025-06-13 10:44:56 -07:00

1034 lines
33 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <algorithm>
#include <cassert>
#include <numeric>
#include <sstream>
#include "mlx/backend/gpu/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/kernels/defines.h"
#include "mlx/backend/metal/kernels/steel/conv/params.h"
#include "mlx/backend/metal/matmul.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
using namespace mlx::steel;
namespace mlx::core {
namespace {
template <int N>
void explicit_gemm_conv_ND_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<N>& conv_params) {
// Get gemm shapes
int implicit_M = out.size() / conv_params.O;
int implicit_K = wt.size() / conv_params.O;
int implicit_N = conv_params.O;
// Prepare unfolding array
Shape unfolded_shape{implicit_M, implicit_K};
array in_unfolded(unfolded_shape, in.dtype(), nullptr, {});
in_unfolded.set_data(allocator::malloc(in_unfolded.nbytes()));
// Prepare unfolding kernel
std::ostringstream kname;
kname << "naive_unfold_nd_" << type_to_name(in_unfolded) << "_" << N;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(in_unfolded, 1);
compute_encoder.set_bytes(conv_params, 2);
// Launch unfolding kernel
size_t tgp_x = std::min(conv_params.C, 64);
tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
size_t tgp_y = 256 / tgp_x;
MTL::Size grid_dims = MTL::Size(
conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
MTL::Size group_dims = MTL::Size(
std::min(tgp_x, grid_dims.width), std::min(tgp_y, grid_dims.height), 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
// Reshape weight
Shape wt_reshape{implicit_K, implicit_N};
Strides wt_restride{1, implicit_K};
array wt_reshaped(wt_reshape, wt.dtype(), nullptr, {});
auto wt_flags = wt.flags();
wt_flags.row_contiguous = false;
wt_flags.col_contiguous = true;
wt_reshaped.copy_shared_buffer(wt, wt_restride, wt_flags, wt.data_size());
// Perform gemm
std::vector<array> copies = {in_unfolded};
return steel_matmul(
s,
d,
/*a = */ in_unfolded,
/*b = */ wt_reshaped,
/*c = */ out,
/*M = */ implicit_M,
/*N = */ implicit_N,
/*K = */ implicit_K,
/*batch_size_out = */ 1,
/*a_cols = */ implicit_K,
/*b_cols = */ implicit_K,
/*a_transposed = */ false,
/*b_transposed = */ true,
/*copies = */ copies);
}
template <int N>
void explicit_gemm_conv_group_ND_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<N>& conv_params) {
const int groups = conv_params.groups;
const int C_per_group = conv_params.C / conv_params.groups;
const int O_per_group = conv_params.O / conv_params.groups;
// Get gemm shapes
const int implicit_M = out.size() / conv_params.O;
const int implicit_K = wt.size() / conv_params.O;
const int implicit_N = O_per_group;
int kernel_size = 1;
for (int i = 0; i < N; ++i) {
kernel_size *= conv_params.wS[i];
}
// Prepare unfolding array
Shape unfolded_shape{implicit_M, implicit_K * groups};
array in_unfolded(unfolded_shape, in.dtype(), nullptr, {});
in_unfolded.set_data(allocator::malloc(in_unfolded.nbytes()));
// Prepare unfolding kernel
std::ostringstream kname;
kname << "naive_unfold_transpose_nd_" << type_to_name(in_unfolded) << "_"
<< N;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_output_array(in_unfolded, 1);
compute_encoder.set_bytes(conv_params, 2);
// Launch unfolding kernel
size_t tgp_x = std::min(conv_params.C, 64);
tgp_x = 32 * ((tgp_x + 32 - 1) / 32);
size_t tgp_y = 256 / tgp_x;
MTL::Size grid_dims = MTL::Size(
conv_params.C, unfolded_shape[1] / conv_params.C, unfolded_shape[0]);
MTL::Size group_dims = MTL::Size(
std::min(tgp_x, grid_dims.width), std::min(tgp_y, grid_dims.height), 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
// Transpose kernel weights so that we can slice them by contiguous chunks
// of channel groups.
array wt_view(
{wt.shape(0), C_per_group, kernel_size}, wt.dtype(), nullptr, {});
wt_view.copy_shared_buffer(
wt, {wt.strides(0), 1, C_per_group}, wt.flags(), wt.size());
// Materialize
auto wt_transpose = array(wt_view.shape(), wt_view.dtype(), nullptr, {});
copy_gpu(wt_view, wt_transpose, CopyType::General, s);
// Perform gemm
std::vector<array> copies = {in_unfolded, wt_transpose};
return steel_matmul_regular(
/* const Stream& s = */ s,
/* Device& d = */ d,
/* const array& a = */ in_unfolded,
/* const array& b = */ wt_transpose,
/* array& c = */ out,
/* int M = */ implicit_M,
/* int N = */ implicit_N,
/* int K = */ implicit_K,
/* int batch_size_out = */ groups,
/* int lda = */ implicit_K * groups,
/* int ldb = */ implicit_K,
/* int ldd = */ implicit_N * groups,
/* bool transpose_a = */ false,
/* bool transpose_b = */ true,
/* std::vector<array>& copies = */ copies,
/* Shape batch_shape = */ {1},
/* Strides batch_strides = */ {0},
/* int64_t A_batch_strides = */ int64_t(implicit_K),
/* int64_t B_batch_strides = */ int64_t(implicit_N) * implicit_K,
/* int64_t matrix_stride_out = */ int64_t(implicit_N));
}
void implicit_gemm_conv_2D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params) {
const int groups = conv_params.groups;
const int C_per_group = conv_params.C / conv_params.groups;
const int O_per_group = conv_params.O / conv_params.groups;
// Deduce implicit gemm size
const int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1];
const int implicit_N = O_per_group;
const int implicit_K = conv_params.wS[0] * conv_params.wS[1] * C_per_group;
// Determine block and warp tiles
int wm = 2, wn = 2;
int bm = implicit_M >= 8192 && C_per_group >= 64 ? 64 : 32;
int bn = (bm == 64 || implicit_N >= 64) ? 64 : 32;
int bk = 16;
if (implicit_N <= 16) {
bn = 8;
wm = 4;
wn = 1;
}
int tn = (implicit_N + bn - 1) / bn;
int tm = (implicit_M + bm - 1) / bm;
int swizzle_log = 0;
// Fix small channel specialization
int n_channel_specialization = 0;
int channel_k_iters = ((C_per_group + bk - 1) / bk);
int gemm_k_iters = conv_params.wS[0] * conv_params.wS[1] * channel_k_iters;
if (C_per_group <= 2) {
gemm_k_iters = (implicit_K + bk - 1) / bk;
n_channel_specialization = C_per_group;
} else if (C_per_group <= 4) {
gemm_k_iters = ((conv_params.wS[0] * conv_params.wS[1] * 4) + bk - 1) / bk;
n_channel_specialization = C_per_group;
}
bool small_filter = (!n_channel_specialization) &&
(conv_params.wS[0] <= 16 && conv_params.wS[1] <= 16);
// Fix host side helper params
int sign = (conv_params.flip ? -1 : 1);
int ijw = conv_params.in_strides[2] * conv_params.kdil[1];
int ijh = conv_params.in_strides[1] * conv_params.kdil[0];
int inp_jump_w = sign * ijw;
int inp_jump_h = sign * (ijh - (conv_params.wS[1] - 1) * ijw);
int inp_jump_c = bk - sign * (conv_params.wS[0] - 1) * ijh -
sign * (conv_params.wS[1] - 1) * ijw;
// Build implicit gemm params
ImplicitGemmConv2DParams gemm_params{
/* const int M = */ implicit_M,
/* const int N = */ implicit_N,
/* const int K = */ implicit_K,
/* const int gemm_k_iterations = */ gemm_k_iters,
/* const int inp_jump_w = */ inp_jump_w,
/* const int inp_jump_h = */ inp_jump_h,
/* const int inp_jump_c = */ inp_jump_c,
/* const int tiles_n = */ tn,
/* const int tiles_m = */ tm,
/* const int swizzle_log = */ swizzle_log};
// Determine kernel
std::ostringstream kname;
kname << "implicit_gemm_conv_2d_" << type_to_name(out) << "_bm" << bm << "_bn"
<< bn << "_bk" << bk << "_wm" << wm << "_wn" << wn << "_channel_"
<< (n_channel_specialization ? std::to_string(n_channel_specialization)
: "l")
<< "_filter_" << (small_filter ? 's' : 'l');
// Encode and dispatch kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = get_steel_conv_kernel(
d,
kname.str(),
out,
bm,
bn,
bk,
wm,
wn,
n_channel_specialization,
small_filter);
compute_encoder.set_compute_pipeline_state(kernel);
// Deduce grid launch dimensions
int tile = 1 << swizzle_log;
size_t grid_dim_y = (tm + tile - 1) / tile;
size_t grid_dim_x = tn * tile;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(grid_dim_x, grid_dim_y, groups);
// Encode arrays
compute_encoder.set_input_array(in, 0);
compute_encoder.set_input_array(wt, 1);
compute_encoder.set_output_array(out, 2);
// Encode params
compute_encoder.set_bytes(conv_params, 3);
compute_encoder.set_bytes(gemm_params, 4);
// Launch kernel
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void implicit_gemm_conv_2D_general_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params) {
// Deduce implicit gemm size
int implicit_M = conv_params.N * conv_params.oS[0] * conv_params.oS[1];
int implicit_N = conv_params.O;
int implicit_K = conv_params.wS[0] * conv_params.wS[1] * conv_params.C;
// Determine block and warp tiles
int wm = 2, wn = 2;
// Make jump params
int f_wgt_jump_h =
std::lcm(conv_params.idil[0], conv_params.kdil[0]) / conv_params.kdil[0];
int f_wgt_jump_w =
std::lcm(conv_params.idil[1], conv_params.kdil[1]) / conv_params.kdil[1];
int f_out_jump_h =
std::lcm(conv_params.idil[0], conv_params.str[0]) / conv_params.str[0];
int f_out_jump_w =
std::lcm(conv_params.idil[1], conv_params.str[1]) / conv_params.str[1];
int adj_out_h = (conv_params.oS[0] + f_out_jump_h - 1) / f_out_jump_h;
int adj_out_w = (conv_params.oS[1] + f_out_jump_w - 1) / f_out_jump_w;
int adj_out_hw = adj_out_h * adj_out_w;
int adj_implicit_m = conv_params.N * adj_out_hw;
Conv2DGeneralJumpParams jump_params{
/* const int f_wgt_jump_h = */ f_wgt_jump_h,
/* const int f_wgt_jump_w = */ f_wgt_jump_w,
/* const int f_out_jump_h = */ f_out_jump_h,
/* const int f_out_jump_w = */ f_out_jump_w,
/* const int adj_out_h = */ adj_out_h,
/* const int adj_out_w = */ adj_out_w,
/* const int adj_out_hw = */ adj_out_hw,
/* const int adj_implicit_m = */ adj_implicit_m};
// Make base info
std::vector<Conv2DGeneralBaseInfo> base_h(f_out_jump_h);
std::vector<Conv2DGeneralBaseInfo> base_w(f_out_jump_w);
int jump_h = conv_params.flip ? -conv_params.kdil[0] : conv_params.kdil[0];
int jump_w = conv_params.flip ? -conv_params.kdil[1] : conv_params.kdil[1];
int init_h =
(conv_params.flip ? (conv_params.wS[0] - 1) * conv_params.kdil[0] : 0);
int init_w =
(conv_params.flip ? (conv_params.wS[1] - 1) * conv_params.kdil[1] : 0);
for (int i = 0; i < f_out_jump_h; ++i) {
int ih_loop = i * conv_params.str[0] - conv_params.pad[0] + init_h;
int wh_base = 0;
while (wh_base < conv_params.wS[0] && ih_loop % conv_params.idil[0] != 0) {
wh_base++;
ih_loop += jump_h;
}
int wh_size =
((conv_params.wS[0] - wh_base) + f_wgt_jump_h - 1) / f_wgt_jump_h;
base_h[i] = {wh_base, wh_size};
}
for (int j = 0; j < f_out_jump_w; ++j) {
int iw_loop = j * conv_params.str[1] - conv_params.pad[1] + init_w;
int ww_base = 0;
while (ww_base < conv_params.wS[1] && iw_loop % conv_params.idil[1] != 0) {
ww_base++;
iw_loop += jump_w;
}
int ww_size =
((conv_params.wS[1] - ww_base) + f_wgt_jump_w - 1) / f_wgt_jump_w;
base_w[j] = {ww_base, ww_size};
}
// Collect block sizes
int bm = adj_implicit_m >= 8192 && conv_params.C >= 64 ? 64 : 32;
int bn = (bm == 64 && implicit_N >= 64) ? 64 : 32;
int bk = 16;
int tn = (implicit_N + bn - 1) / bn;
int tm = (adj_implicit_m + bm - 1) / bm;
int swizzle_log = 0;
// Get channel iteration info
int channel_k_iters = ((conv_params.C + bk - 1) / bk);
int gemm_k_iters = channel_k_iters;
bool align_C = conv_params.C % bk == 0;
// Fix host side helper params
int sign = (conv_params.flip ? -1 : 1);
int ijw = conv_params.in_strides[2] * conv_params.kdil[1];
int ijh = conv_params.in_strides[1] * conv_params.kdil[0];
int inp_jump_w = sign * ijw;
int inp_jump_h = sign * (ijh - (conv_params.wS[1] - 1) * ijw);
int inp_jump_c = bk - sign * (conv_params.wS[0] - 1) * ijh -
sign * (conv_params.wS[1] - 1) * ijw;
// Build implicit gemm params
ImplicitGemmConv2DParams gemm_params{
/* const int M = */ implicit_M,
/* const int N = */ implicit_N,
/* const int K = */ implicit_K,
/* const int gemm_k_iterations = */ gemm_k_iters,
/* const int inp_jump_w = */ inp_jump_w,
/* const int inp_jump_h = */ inp_jump_h,
/* const int inp_jump_c = */ inp_jump_c,
/* const int tiles_n = */ tn,
/* const int tiles_m = */ tm,
/* const int swizzle_log = */ swizzle_log};
// Determine kernel
std::string kname;
kname.reserve(64);
concatenate(
kname,
"implicit_gemm_conv_2d_general_",
type_to_name(out),
"_bm",
bm,
"_bn",
bn,
"_bk",
bk,
"_wm",
wm,
"_wn",
wn);
std::string hash_name;
hash_name.reserve(64);
concatenate(hash_name, kname, "_alC_", align_C);
metal::MTLFCList func_consts = {
{&align_C, MTL::DataType::DataTypeBool, 200},
};
// Encode and dispatch kernel
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = get_steel_conv_general_kernel(
d, kname, hash_name, func_consts, out, bm, bn, bk, wm, wn);
compute_encoder.set_compute_pipeline_state(kernel);
// Deduce grid launch dimensions
int tile = 1 << swizzle_log;
size_t grid_dim_y = (tm + tile - 1) / tile;
size_t grid_dim_x = tn * tile;
size_t grid_dim_z = f_out_jump_h * f_out_jump_w;
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(grid_dim_x, grid_dim_y, grid_dim_z);
// Encode arrays
compute_encoder.set_input_array(in, 0);
compute_encoder.set_input_array(wt, 1);
compute_encoder.set_output_array(out, 2);
// Encode params
compute_encoder.set_bytes(conv_params, 3);
compute_encoder.set_bytes(gemm_params, 4);
compute_encoder.set_bytes(jump_params, 5);
compute_encoder.set_vector_bytes(base_h, 6);
compute_encoder.set_vector_bytes(base_w, 7);
// Launch kernel
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void winograd_conv_2D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params,
std::vector<array>& copies_w) {
Shape padded_shape = {
conv_params.N,
conv_params.iS[0] + 2 * conv_params.pad[0],
conv_params.iS[1] + 2 * conv_params.pad[1],
conv_params.C};
padded_shape[1] = 6 * ((padded_shape[1] - 2 + 5) / 6) + 2;
padded_shape[2] = 6 * ((padded_shape[2] - 2 + 5) / 6) + 2;
array in_padded(std::move(padded_shape), in.dtype(), nullptr, {});
// Fill with zeros
array zero_arr = array(0, in.dtype());
fill_gpu(zero_arr, in_padded, s);
copies_w.push_back(zero_arr);
// Pick input slice from padded
size_t data_offset = conv_params.pad[0] * in_padded.strides()[1] +
conv_params.pad[1] * in_padded.strides()[2];
array in_padded_slice(in.shape(), in_padded.dtype(), nullptr, {});
in_padded_slice.copy_shared_buffer(
in_padded,
in_padded.strides(),
in_padded.flags(),
in_padded_slice.size(),
data_offset);
// Copy input values into the slice
copy_gpu_inplace(in, in_padded_slice, CopyType::GeneralGeneral, s);
copies_w.push_back(in_padded_slice);
copies_w.push_back(in_padded);
MLXConvParams<2> conv_params_updated{
/* const int N = */ static_cast<int>(in_padded.shape(0)),
/* const int C = */ static_cast<int>(in_padded.shape(3)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */
{static_cast<int>(in_padded.shape(1)),
static_cast<int>(in_padded.shape(2))},
/* const int wS[NDIM] = */
{static_cast<int>(wt.shape(1)), static_cast<int>(wt.shape(2))},
/* const int oS[NDIM] = */
{static_cast<int>(out.shape(1)), static_cast<int>(out.shape(2))},
/* const int str[NDIM] = */ {1, 1},
/* const int pad[NDIM] = */ {0, 0},
/* const int kdil[NDIM] = */ {1, 1},
/* const int idil[NDIM] = */ {1, 1},
/* const size_t in_strides[NDIM + 2] = */
{in_padded.strides()[0],
in_padded.strides()[1],
in_padded.strides()[2],
in_padded.strides()[3]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], wt.strides()[2], wt.strides()[3]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2], out.strides()[3]},
/* const int groups = */ 1,
/* const bool flip = */ false,
};
int O_c = conv_params.O;
int C_c = conv_params.C;
int N_tiles_n = conv_params.N;
int N_tiles_h = (conv_params.oS[0] + 5) / 6;
int N_tiles_w = (conv_params.oS[1] + 5) / 6;
int N_tiles = N_tiles_n * N_tiles_h * N_tiles_w;
// Do filter transform
Shape filt_wg_shape = {8 * 8, conv_params.C, conv_params.O};
array filt_wg(std::move(filt_wg_shape), wt.dtype(), nullptr, {});
filt_wg.set_data(allocator::malloc(filt_wg.nbytes()));
copies_w.push_back(filt_wg);
{
int bc = 32;
int bo = 4;
std::ostringstream kname;
kname << "winograd_conv_2d_weight_transform_" << type_to_name(out) << "_bc"
<< bc;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(wt, 0);
compute_encoder.set_output_array(filt_wg, 1);
compute_encoder.set_bytes(C_c, 2);
compute_encoder.set_bytes(O_c, 3);
MTL::Size group_dims = MTL::Size(32, bo, 1);
MTL::Size grid_dims = MTL::Size(O_c / bo, 1, 1);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
// Do input transform
Shape inp_wg_shape = {8 * 8, N_tiles, conv_params.C};
array inp_wg(std::move(inp_wg_shape), in.dtype(), nullptr, {});
inp_wg.set_data(allocator::malloc(inp_wg.nbytes()));
copies_w.push_back(inp_wg);
{
int bc = 32;
int wm = 2;
int wn = 2;
std::ostringstream kname;
kname << "winograd_conv_2d_input_transform_" << type_to_name(out) << "_bc"
<< bc;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in_padded, 0);
compute_encoder.set_output_array(inp_wg, 1);
compute_encoder.set_bytes(conv_params_updated, 2);
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(N_tiles_w, N_tiles_h, N_tiles_n);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
// Do batched gemm
Shape out_wg_shape = {8 * 8, N_tiles, conv_params.O};
array out_wg(std::move(out_wg_shape), in.dtype(), nullptr, {});
out_wg.set_data(allocator::malloc(out_wg.nbytes()));
copies_w.push_back(out_wg);
{
std::vector<array> empty_copies;
steel_matmul(
s,
d,
/*a = */ inp_wg,
/*b = */ filt_wg,
/*c = */ out_wg,
/*M = */ N_tiles,
/*N = */ conv_params.O,
/*K = */ conv_params.C,
/*batch_size_out = */ 8 * 8,
/*a_cols = */ conv_params.C,
/*b_cols = */ conv_params.O,
/*a_transposed = */ false,
/*b_transposed = */ false,
/*copies = */ empty_copies);
}
// Do output transform
{
int bc = 32;
int wm = 2;
int wn = 2;
std::ostringstream kname;
kname << "winograd_conv_2d_output_transform_" << type_to_name(out) << "_bo"
<< bc;
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(kname.str());
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(out_wg, 0);
compute_encoder.set_output_array(out, 1);
compute_encoder.set_bytes(conv_params_updated, 2);
MTL::Size group_dims = MTL::Size(32, wn, wm);
MTL::Size grid_dims = MTL::Size(N_tiles_w, N_tiles_h, N_tiles_n);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
}
void depthwise_conv_2D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params) {
std::ostringstream kname;
kname << "depthwise_conv_2d_" << type_to_name(out);
std::string base_name = kname.str();
const int N = conv_params.N;
const int ker_h = conv_params.wS[0];
const int ker_w = conv_params.wS[1];
const int str_h = conv_params.str[0];
const int str_w = conv_params.str[1];
const int tc = 8;
const int tw = 8;
const int th = 4;
const bool do_flip = conv_params.flip;
metal::MTLFCList func_consts = {
{&ker_h, MTL::DataType::DataTypeInt, 00},
{&ker_w, MTL::DataType::DataTypeInt, 01},
{&str_h, MTL::DataType::DataTypeInt, 10},
{&str_w, MTL::DataType::DataTypeInt, 11},
{&th, MTL::DataType::DataTypeInt, 100},
{&tw, MTL::DataType::DataTypeInt, 101},
{&do_flip, MTL::DataType::DataTypeBool, 200},
};
// clang-format off
kname << "_ker_h_" << ker_h
<< "_ker_w_" << ker_w
<< "_str_h_" << str_h
<< "_str_w_" << str_w
<< "_tgp_h_" << th
<< "_tgp_w_" << tw
<< "_do_flip_" << (do_flip ? 't' : 'n'); // clang-format on
std::string hash_name = kname.str();
auto& compute_encoder = d.get_command_encoder(s.index);
auto kernel = d.get_kernel(base_name, hash_name, func_consts);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(in, 0);
compute_encoder.set_input_array(wt, 1);
compute_encoder.set_output_array(out, 2);
compute_encoder.set_bytes(conv_params, 3);
MTL::Size group_dims = MTL::Size(tc, tw, th);
MTL::Size grid_dims = MTL::Size(
conv_params.C / tc, conv_params.oS[1] / tw, (conv_params.oS[0] / th) * N);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
}
void dispatch_conv_2D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const MLXConvParams<2>& conv_params,
std::vector<array>& copies) {
bool is_stride_one = conv_params.str[0] == 1 && conv_params.str[1] == 1;
bool is_kdil_one = conv_params.kdil[0] == 1 && conv_params.kdil[1] == 1;
bool is_idil_one = conv_params.idil[0] == 1 && conv_params.idil[1] == 1;
if (is_idil_one && conv_params.groups > 1) {
const int C_per_group = conv_params.C / conv_params.groups;
const int O_per_group = conv_params.O / conv_params.groups;
if (C_per_group == 1 && O_per_group == 1 && is_kdil_one &&
conv_params.wS[0] <= 7 && conv_params.wS[1] <= 7 &&
conv_params.str[0] <= 2 && conv_params.str[1] <= 2 &&
conv_params.oS[0] % 8 == 0 && conv_params.oS[1] % 8 == 0 &&
conv_params.wt_strides[1] == conv_params.wS[1] &&
conv_params.C % 16 == 0 && conv_params.C == conv_params.O) {
return depthwise_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
if ((C_per_group <= 4 || C_per_group % 16 == 0) &&
(O_per_group <= 16 || O_per_group % 16 == 0)) {
return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
} else {
return explicit_gemm_conv_group_ND_gpu(s, d, in, wt, out, conv_params);
}
}
// Direct to winograd conv
bool inp_large =
(conv_params.N * conv_params.iS[0] * conv_params.iS[1]) >= 4096;
bool channels_large = (conv_params.C + conv_params.O) >= 256;
bool out_large =
(conv_params.N * conv_params.oS[0] * conv_params.oS[1]) >= 256;
if (!conv_params.flip && is_stride_one && is_kdil_one && is_idil_one &&
conv_params.wS[0] == 3 && conv_params.wS[1] == 3 &&
conv_params.C % 32 == 0 && conv_params.O % 32 == 0 && inp_large &&
channels_large) {
return winograd_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
}
// Direct to implicit gemm conv
if (is_idil_one && (conv_params.C <= 4 || conv_params.C % 16 == 0) &&
(conv_params.O <= 16 || conv_params.O % 16 == 0)) {
return implicit_gemm_conv_2D_gpu(s, d, in, wt, out, conv_params);
}
else if ((conv_params.C % 16 == 0 && conv_params.O % 16 == 0) || out_large) {
return implicit_gemm_conv_2D_general_gpu(s, d, in, wt, out, conv_params);
}
// Direct to explicit gemm conv
else {
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
}
void conv_1D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
int groups,
bool flip,
std::vector<array>& copies) {
bool is_idil_one = in_dilation[0] == 1;
int C = in.shape(2);
int O = wt.shape(0);
const int C_per_group = in.shape(2) / groups;
const int O_per_group = wt.shape(0) / groups;
// Direct to implicit gemm conv
if (is_idil_one && (C_per_group <= 4 || C_per_group % 16 == 0) &&
(O_per_group <= 16 || O_per_group % 16 == 0)) {
MLXConvParams<2> conv_params{
/* const int N = */ static_cast<int>(in.shape(0)),
/* const int C = */ C,
/* const int O = */ O,
/* const int iS[NDIM] = */ {static_cast<int>(in.shape(1)), 1},
/* const int wS[NDIM] = */ {static_cast<int>(wt.shape(1)), 1},
/* const int oS[NDIM] = */ {static_cast<int>(out.shape(1)), 1},
/* const int str[NDIM] = */ {wt_strides[0], 1},
/* const int pad[NDIM] = */ {padding[0], 0},
/* const int kdil[NDIM] = */ {wt_dilation[0], 1},
/* const int idil[NDIM] = */ {in_dilation[0], 1},
/* const size_t in_strides[NDIM + 2] = */
{in.strides()[0], in.strides()[1], 0, in.strides()[2]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], 0, wt.strides()[2]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], 0, out.strides()[2]},
/* const int groups = */ groups,
/* const bool flip = */ flip};
dispatch_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
return;
}
// Make conv params
MLXConvParams<1> conv_params{
/* const int N = */ static_cast<int>(in.shape(0)),
/* const int C = */ static_cast<int>(in.shape(2)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */ {static_cast<int>(in.shape(1))},
/* const int wS[NDIM] = */ {static_cast<int>(wt.shape(1))},
/* const int oS[NDIM] = */ {static_cast<int>(out.shape(1))},
/* const int str[NDIM] = */ {wt_strides[0]},
/* const int pad[NDIM] = */ {padding[0]},
/* const int kdil[NDIM] = */ {wt_dilation[0]},
/* const int idil[NDIM] = */ {in_dilation[0]},
/* const size_t in_strides[NDIM + 2] = */
{in.strides()[0], in.strides()[1], in.strides()[2]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0], wt.strides()[1], wt.strides()[2]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0], out.strides()[1], out.strides()[2]},
/* const int groups = */ groups,
/* const bool flip = */ flip};
// Direct to explicit gemm conv
if (groups > 1) {
return explicit_gemm_conv_group_ND_gpu(s, d, in, wt, out, conv_params);
} else {
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
}
void conv_2D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
const int groups,
bool flip,
std::vector<array>& copies) {
// Make conv params
MLXConvParams<2> conv_params{
/* const int N = */ static_cast<int>(in.shape(0)),
/* const int C = */ static_cast<int>(in.shape(3)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */
{static_cast<int>(in.shape(1)), static_cast<int>(in.shape(2))},
/* const int wS[NDIM] = */
{static_cast<int>(wt.shape(1)), static_cast<int>(wt.shape(2))},
/* const int oS[NDIM] = */
{static_cast<int>(out.shape(1)), static_cast<int>(out.shape(2))},
/* const int str[NDIM] = */ {wt_strides[0], wt_strides[1]},
/* const int pad[NDIM] = */ {padding[0], padding[1]},
/* const int kdil[NDIM] = */ {wt_dilation[0], wt_dilation[1]},
/* const int idil[NDIM] = */ {in_dilation[0], in_dilation[1]},
/* const size_t in_strides[NDIM + 2] = */
{in.strides(0), in.strides(1), in.strides(2), in.strides(3)},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides(0), wt.strides(1), wt.strides(2), wt.strides(3)},
/* const size_t out_strides[NDIM + 2] = */
{out.strides(0), out.strides(1), out.strides(2), out.strides(3)},
/* const int groups = */ groups,
/* const bool flip = */ flip,
};
dispatch_conv_2D_gpu(s, d, in, wt, out, conv_params, copies);
}
void conv_3D_gpu(
const Stream& s,
metal::Device& d,
const array& in,
const array& wt,
array out,
const std::vector<int>& padding,
const std::vector<int>& wt_strides,
const std::vector<int>& wt_dilation,
const std::vector<int>& in_dilation,
bool flip,
std::vector<array>& copies) {
// Make conv params
MLXConvParams<3> conv_params{
/* const int N = */ static_cast<int>(in.shape(0)),
/* const int C = */ static_cast<int>(in.shape(4)),
/* const int O = */ static_cast<int>(wt.shape(0)),
/* const int iS[NDIM] = */
{static_cast<int>(in.shape(1)),
static_cast<int>(in.shape(2)),
static_cast<int>(in.shape(3))},
/* const int wS[NDIM] = */
{static_cast<int>(wt.shape(1)),
static_cast<int>(wt.shape(2)),
static_cast<int>(wt.shape(3))},
/* const int oS[NDIM] = */
{static_cast<int>(out.shape(1)),
static_cast<int>(out.shape(2)),
static_cast<int>(out.shape(3))},
/* const int str[NDIM] = */ {wt_strides[0], wt_strides[1], wt_strides[2]},
/* const int pad[NDIM] = */ {padding[0], padding[1], padding[2]},
/* const int kdil[NDIM] = */
{wt_dilation[0], wt_dilation[1], wt_dilation[2]},
/* const int idil[NDIM] = */
{in_dilation[0], in_dilation[1], in_dilation[2]},
/* const size_t in_strides[NDIM + 2] = */
{in.strides()[0],
in.strides()[1],
in.strides()[2],
in.strides()[3],
in.strides()[4]},
/* const size_t wt_strides[NDIM + 2] = */
{wt.strides()[0],
wt.strides()[1],
wt.strides()[2],
wt.strides()[3],
wt.strides()[4]},
/* const size_t out_strides[NDIM + 2] = */
{out.strides()[0],
out.strides()[1],
out.strides()[2],
out.strides()[3],
out.strides()[4]},
/* const int groups = */ 1,
/* const bool flip = */ flip,
};
return explicit_gemm_conv_ND_gpu(s, d, in, wt, out, conv_params);
}
} // namespace
void Convolution::eval_gpu(const std::vector<array>& inputs, array& out) {
out.set_data(allocator::malloc(out.nbytes()));
auto& s = stream();
auto& d = metal::device(s.device);
// Ensure contiguity
std::vector<array> copies;
auto in = inputs[0];
auto wt = inputs[1];
if (!in.flags().row_contiguous) {
array arr_copy(in.shape(), in.dtype(), nullptr, {});
copy_gpu(in, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
in = arr_copy;
}
if (!wt.flags().row_contiguous) {
array arr_copy(wt.shape(), wt.dtype(), nullptr, {});
copy_gpu(wt, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
wt = arr_copy;
}
// 3D conv
if (out.ndim() == 5) {
conv_3D_gpu(
s,
d,
in,
wt,
out,
padding_lo_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
flip_,
copies);
}
// 2D conv
else if (out.ndim() == 4) {
conv_2D_gpu(
s,
d,
in,
wt,
out,
padding_lo_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
groups_,
flip_,
copies);
}
// 1D conv
else if (out.ndim() == 3) {
conv_1D_gpu(
s,
d,
in,
wt,
out,
padding_lo_,
kernel_strides_,
kernel_dilation_,
input_dilation_,
groups_,
flip_,
copies);
}
// Throw error
else {
throw std::invalid_argument(
"[Convolution::eval_gpu] Only supports 1D, 2D or 3D convolutions.");
}
// Record copies
d.add_temporaries(std::move(copies), s.index);
}
} // namespace mlx::core