mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1355 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1355 lines
		
	
	
		
			49 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023-2024 Apple Inc.
 | |
| 
 | |
| import math
 | |
| import unittest
 | |
| from itertools import permutations
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx_tests
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| class TestBlas(mlx_tests.MLXTestCase):
 | |
|     @property
 | |
|     def dtypes(self):
 | |
|         return ["float32", "float16"]
 | |
| 
 | |
|     def __gemm_test(
 | |
|         self,
 | |
|         shape_a,
 | |
|         shape_b,
 | |
|         np_dtype=np.float32,
 | |
|         f_np_a=lambda x: x,
 | |
|         f_np_b=lambda x: x,
 | |
|         f_mx_a=lambda x: x,
 | |
|         f_mx_b=lambda x: x,
 | |
|     ):
 | |
|         with self.subTest(
 | |
|             dtype=np.dtype(np_dtype).name, shape_a=shape_a, shape_b=shape_b
 | |
|         ):
 | |
|             np.random.seed(42)
 | |
|             scale = max(np.sum(shape_a), 128)
 | |
|             a_np = np.random.normal(0.0, 1.0 / scale, shape_a).astype(np_dtype)
 | |
|             b_np = np.random.normal(0.0, 1.0 / scale, shape_b).astype(np_dtype)
 | |
| 
 | |
|             a_mx = mx.array(a_np)
 | |
|             b_mx = mx.array(b_np)
 | |
| 
 | |
|             a_np = f_np_a(a_np.astype(np.float32))
 | |
|             b_np = f_np_b(b_np.astype(np.float32))
 | |
|             a_mx = f_mx_a(a_mx)
 | |
|             b_mx = f_mx_b(b_mx)
 | |
| 
 | |
|             out_npy = a_np @ b_np
 | |
|             out_mlx = a_mx @ b_mx
 | |
| 
 | |
|             self.assertListEqual(list(out_npy.shape), list(out_mlx.shape))
 | |
|             self.assertTrue(np.allclose(out_mlx, out_npy.astype(np_dtype), atol=1e-5))
 | |
| 
 | |
|     def test_matmul_unaligned(self):
 | |
|         if not mx.is_available(mx.gpu):
 | |
|             return
 | |
| 
 | |
|         for dtype in self.dtypes:
 | |
|             np_dtype = getattr(np, dtype)
 | |
|             base_shapes = [4, 8, 16, 32, 64, 128]
 | |
|             perturbations = [-2, -1, 0, 1, 2]
 | |
| 
 | |
|             for dim in base_shapes:
 | |
|                 for p in perturbations:
 | |
|                     shape_a = (dim + p, dim + p)
 | |
|                     shape_b = (dim + p, dim + p)
 | |
|                     self.__gemm_test(shape_a, shape_b, np_dtype)
 | |
| 
 | |
|     def test_matvec_unaligned(self):
 | |
|         a = mx.random.normal(shape=(4, 128))
 | |
|         b = mx.random.normal(shape=(129,))[1:]
 | |
|         out = a @ b
 | |
|         np_out = np.array(a) @ np.array(b)
 | |
|         self.assertTrue(np.allclose(out, np_out))
 | |
| 
 | |
|     def test_matmul_shapes(self):
 | |
|         if not mx.is_available(mx.gpu):
 | |
|             return
 | |
| 
 | |
|         shapes = [
 | |
|             (1, 2, 1, 1),
 | |
|             (1, 1, 2, 1),
 | |
|             (3, 23, 457, 3),
 | |
|         ]
 | |
| 
 | |
|         if mx.default_device() == mx.gpu:
 | |
|             shapes += [
 | |
|                 (16, 768, 768, 128),
 | |
|                 (1, 64, 64, 4096),
 | |
|             ]
 | |
| 
 | |
|         for dtype in self.dtypes:
 | |
|             np_dtype = getattr(np, dtype)
 | |
| 
 | |
|             for B, M, N, K in shapes:
 | |
|                 with self.subTest(transpose="nn"):
 | |
|                     shape_a = (B, M, K)
 | |
|                     shape_b = (B, K, N)
 | |
|                     self.__gemm_test(shape_a, shape_b, np_dtype)
 | |
| 
 | |
|                 with self.subTest(transpose="nt"):
 | |
|                     shape_a = (B, M, K)
 | |
|                     shape_b = (B, N, K)
 | |
|                     self.__gemm_test(
 | |
|                         shape_a,
 | |
|                         shape_b,
 | |
|                         np_dtype,
 | |
|                         f_np_b=lambda x: np.transpose(x, (0, 2, 1)),
 | |
|                         f_mx_b=lambda x: mx.transpose(x, (0, 2, 1)),
 | |
|                     )
 | |
| 
 | |
|                 with self.subTest(transpose="tn"):
 | |
|                     shape_a = (B, K, M)
 | |
|                     shape_b = (B, K, N)
 | |
|                     self.__gemm_test(
 | |
|                         shape_a,
 | |
|                         shape_b,
 | |
|                         np_dtype,
 | |
|                         f_np_a=lambda x: np.transpose(x, (0, 2, 1)),
 | |
|                         f_mx_a=lambda x: mx.transpose(x, (0, 2, 1)),
 | |
|                     )
 | |
| 
 | |
|                 with self.subTest(transpose="tt"):
 | |
|                     shape_a = (B, K, M)
 | |
|                     shape_b = (B, N, K)
 | |
|                     self.__gemm_test(
 | |
|                         shape_a,
 | |
|                         shape_b,
 | |
|                         np_dtype,
 | |
|                         f_np_a=lambda x: np.transpose(x, (0, 2, 1)),
 | |
|                         f_mx_a=lambda x: mx.transpose(x, (0, 2, 1)),
 | |
|                         f_np_b=lambda x: np.transpose(x, (0, 2, 1)),
 | |
|                         f_mx_b=lambda x: mx.transpose(x, (0, 2, 1)),
 | |
|                     )
 | |
| 
 | |
|     def test_matmul(self):
 | |
|         # Note: so far, matmul only works with floating-point types
 | |
|         a = mx.array([[1.0, 2.0], [3.0, 4.0]])
 | |
| 
 | |
|         b = mx.array([[0.0, -1.0], [-3.0, 3.0]])
 | |
| 
 | |
|         expected = [[-6.0, 5.0], [-12.0, 9.0]]
 | |
| 
 | |
|         self.assertEqual((a @ b).tolist(), expected)
 | |
|         self.assertEqual(mx.matmul(a, b).tolist(), expected)
 | |
| 
 | |
|         # Transposed matmul
 | |
|         np.random.seed(0)
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (128, 16)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (128, 16)).astype(np.float32)
 | |
|         c_npy = a_npy @ np.transpose(b_npy, (1, 0))
 | |
|         d_npy = np.transpose(a_npy, (1, 0)) @ b_npy
 | |
| 
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
|         c_mlx = a_mlx @ mx.transpose(b_mlx, (1, 0))
 | |
|         d_mlx = mx.transpose(a_mlx, (1, 0)) @ b_mlx
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
 | |
| 
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
 | |
|         self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-6))
 | |
| 
 | |
|     def test_matmul_dtypes(self):
 | |
|         for dt in self.dtypes:
 | |
|             a_npy = np.random.normal(0.0, 1.0 / 256, (16, 16, 16)).astype(
 | |
|                 getattr(np, dt)
 | |
|             )
 | |
|             b_npy = np.random.normal(0.0, 1.0 / 256, (16, 16, 16)).astype(
 | |
|                 getattr(np, dt)
 | |
|             )
 | |
|             a_mlx = mx.array(a_npy)
 | |
|             b_mlx = mx.array(b_npy)
 | |
| 
 | |
|             c_npy = np.matmul(a_npy, b_npy, dtype=getattr(np, dt))
 | |
|             c_mlx = a_mlx @ b_mlx
 | |
| 
 | |
|             self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
 | |
| 
 | |
|     def test_matmul_batched(self):
 | |
|         np.random.seed(0)
 | |
|         # Batched matmul
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (32, 16, 16)).astype(np.float32)
 | |
|         c_npy = a_npy @ b_npy
 | |
| 
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
|         c_mlx = a_mlx @ b_mlx
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
 | |
| 
 | |
|         # Batched and transposed matmul
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
 | |
|         c_npy = a_npy @ np.transpose(b_npy, (0, 2, 1))
 | |
| 
 | |
|         b_mlx = mx.array(b_npy)
 | |
|         c_mlx = a_mlx @ mx.transpose(b_mlx, (0, 2, 1))
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
 | |
| 
 | |
|         # Batched matmul with simple broadcast
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (16, 16)).astype(np.float32)
 | |
|         c_npy = a_npy @ b_npy
 | |
| 
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
|         c_mlx = a_mlx @ b_mlx
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
 | |
| 
 | |
|         # Both operands broadcasted
 | |
|         d_npy = np.broadcast_to(b_npy, (5, 16, 16))
 | |
|         d_mlx = mx.broadcast_to(b_mlx, (5, 16, 16))
 | |
| 
 | |
|         e_npy = d_npy @ d_npy
 | |
|         e_mlx = d_mlx @ d_mlx
 | |
| 
 | |
|         self.assertListEqual(list(e_npy.shape), list(e_mlx.shape))
 | |
|         self.assertTrue(np.allclose(e_mlx, e_npy, atol=1e-6))
 | |
| 
 | |
|         # Batched and transposed matmul with simple broadcast
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (128, 16)).astype(np.float32)
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         c_npy = a_npy @ np.transpose(b_npy, (1, 0))
 | |
|         c_mlx = a_mlx @ mx.transpose(b_mlx, (1, 0))
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
 | |
| 
 | |
|         # Matmul with vector
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (16,)).astype(np.float32)
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         c_npy = a_npy @ b_npy
 | |
|         c_mlx = a_mlx @ b_mlx
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
 | |
| 
 | |
|         # Test Multiheaded attention style matmul
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (64, 16, 4, 32)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (64, 16, 4, 32)).astype(np.float32)
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         a_npy = np.transpose(a_npy, (0, 2, 1, 3))
 | |
|         b_npy = np.transpose(b_npy, (0, 2, 1, 3))
 | |
|         a_mlx = mx.transpose(a_mlx, (0, 2, 1, 3))
 | |
|         b_mlx = mx.transpose(b_mlx, (0, 2, 1, 3))
 | |
| 
 | |
|         c_npy = a_npy @ np.transpose(b_npy, (0, 1, 3, 2))
 | |
|         c_mlx = a_mlx @ mx.transpose(b_mlx, (0, 1, 3, 2))
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-6))
 | |
| 
 | |
|     def __gemv_test(
 | |
|         self,
 | |
|         shape_mat,
 | |
|         shape_vec,
 | |
|         np_dtype=np.float32,
 | |
|         mat_first=True,
 | |
|         np_mat_f=lambda x: x,
 | |
|         np_vec_f=lambda x: x,
 | |
|         mlx_mat_f=lambda x: x,
 | |
|         mlx_vec_f=lambda x: x,
 | |
|     ):
 | |
|         with self.subTest(
 | |
|             shape_mat=shape_mat, shape_vec=shape_vec, mat_first=mat_first
 | |
|         ):
 | |
|             np.random.seed(42)
 | |
|             scale = max(np.sum(shape_mat), 32)
 | |
|             mat_npy = np.random.normal(0.0, 1.0 / scale, shape_mat).astype(np_dtype)
 | |
|             vec_npy = np.random.normal(0.0, 1.0 / scale, shape_vec).astype(np_dtype)
 | |
| 
 | |
|             mat_mlx = mx.array(mat_npy)
 | |
|             vec_mlx = mx.array(vec_npy)
 | |
| 
 | |
|             mat_npy = np_mat_f(mat_npy)
 | |
|             vec_npy = np_vec_f(vec_npy)
 | |
|             mat_mlx = mlx_mat_f(mat_mlx)
 | |
|             vec_mlx = mlx_vec_f(vec_mlx)
 | |
| 
 | |
|             if mat_first:
 | |
|                 out_npy = mat_npy @ vec_npy
 | |
|                 out_mlx = mat_mlx @ vec_mlx
 | |
|             else:
 | |
|                 out_npy = vec_npy @ mat_npy
 | |
|                 out_mlx = vec_mlx @ mat_mlx
 | |
| 
 | |
|             self.assertListEqual(list(out_npy.shape), list(out_mlx.shape))
 | |
|             self.assertTrue(np.allclose(out_mlx, out_npy, atol=1e-5))
 | |
| 
 | |
|     def test_matrix_vector(self):
 | |
|         for dtype in self.dtypes:
 | |
|             with self.subTest(dtype=dtype):
 | |
|                 np_dtype = getattr(np, dtype)
 | |
| 
 | |
|                 # Basic square matrix test
 | |
|                 self.__gemv_test(
 | |
|                     shape_mat=(64, 64), shape_vec=(64, 1), np_dtype=np_dtype
 | |
|                 )
 | |
|                 self.__gemv_test(
 | |
|                     shape_mat=(64, 64),
 | |
|                     shape_vec=(64, 1),
 | |
|                     np_dtype=np_dtype,
 | |
|                     mat_first=False,
 | |
|                     np_vec_f=lambda x: np.transpose(x, (1, 0)),
 | |
|                     mlx_vec_f=lambda x: mx.transpose(x, (1, 0)),
 | |
|                 )
 | |
| 
 | |
|                 # Vector matrix product with aligned and unaligned shapes
 | |
|                 for in_len_base, out_len_base in (
 | |
|                     (2, 2),
 | |
|                     (32, 32),
 | |
|                     (64, 64),
 | |
|                     (2048, 2048),
 | |
|                 ):
 | |
|                     for mi in (-1, 0, 1):
 | |
|                         for mj in (-1, 0, 1):
 | |
|                             # Vec mat
 | |
|                             shape_mat = (in_len_base + mi, out_len_base + mj)
 | |
|                             shape_vec = (1, in_len_base + mi)
 | |
|                             self.__gemv_test(
 | |
|                                 shape_mat, shape_vec, mat_first=False, np_dtype=np_dtype
 | |
|                             )
 | |
| 
 | |
|                             # Mat vec
 | |
|                             shape_mat = (out_len_base + mj, in_len_base + mi)
 | |
|                             shape_vec = (in_len_base + mi, 1)
 | |
|                             self.__gemv_test(
 | |
|                                 shape_mat, shape_vec, mat_first=True, np_dtype=np_dtype
 | |
|                             )
 | |
| 
 | |
|     def test_matrix_vector_batched(self):
 | |
|         for dtype in self.dtypes:
 | |
|             with self.subTest(dtype=dtype):
 | |
|                 np_dtype = getattr(np, dtype)
 | |
| 
 | |
|                 # Batched mat vec
 | |
|                 for shape_mat, shape_vec in (
 | |
|                     ((32, 128, 64), (32, 64, 1)),
 | |
|                     ((128, 64), (32, 64, 1)),
 | |
|                     ((32, 128, 64), (64, 1)),
 | |
|                     ((2, 1, 8, 1, 6, 128), (2, 1, 8, 4, 128, 1)),
 | |
|                 ):
 | |
|                     self.__gemv_test(
 | |
|                         shape_mat, shape_vec, mat_first=True, np_dtype=np_dtype
 | |
|                     )
 | |
| 
 | |
|                 # Batched vec mat
 | |
|                 for shape_vec, shape_mat in (
 | |
|                     ((32, 1, 128), (32, 128, 64)),
 | |
|                     ((32, 1, 128), (128, 64)),
 | |
|                     ((1, 128), (32, 128, 64)),
 | |
|                     ((1, 8, 4, 1, 128), (1, 8, 1, 128, 6)),
 | |
|                 ):
 | |
|                     self.__gemv_test(
 | |
|                         shape_mat, shape_vec, mat_first=False, np_dtype=np_dtype
 | |
|                     )
 | |
| 
 | |
|     def test_matrix_vector_broadcast(self):
 | |
|         for dtype in self.dtypes:
 | |
|             with self.subTest(dtype=dtype):
 | |
|                 np_dtype = getattr(np, dtype)
 | |
| 
 | |
|                 # Different broadcasts mat vec
 | |
|                 for shape_mat, shape_vec in (
 | |
|                     ((32, 64, 64), (32, 64, 1)),
 | |
|                     ((64, 64), (32, 64, 1)),
 | |
|                     ((32, 64, 64), (64, 1)),
 | |
|                 ):
 | |
|                     self.__gemv_test(
 | |
|                         shape_mat=(64, 64),
 | |
|                         shape_vec=(64, 1),
 | |
|                         np_dtype=np_dtype,
 | |
|                         np_mat_f=(lambda mat_npy: np.broadcast_to(mat_npy, shape_mat)),
 | |
|                         np_vec_f=(lambda vec_npy: np.broadcast_to(vec_npy, shape_vec)),
 | |
|                         mlx_mat_f=(lambda mat_mlx: mx.broadcast_to(mat_mlx, shape_mat)),
 | |
|                         mlx_vec_f=(lambda vec_mlx: mx.broadcast_to(vec_mlx, shape_vec)),
 | |
|                     )
 | |
| 
 | |
|                 # Different broadcasts vec mat
 | |
|                 for shape_vec, shape_mat in (
 | |
|                     ((32, 1, 64), (32, 64, 64)),
 | |
|                     ((32, 1, 64), (64, 64)),
 | |
|                     ((1, 64), (32, 64, 64)),
 | |
|                 ):
 | |
|                     self.__gemv_test(
 | |
|                         shape_mat=(64, 64),
 | |
|                         shape_vec=(1, 64),
 | |
|                         np_dtype=np_dtype,
 | |
|                         mat_first=False,
 | |
|                         np_mat_f=lambda mat_npy: np.broadcast_to(mat_npy, shape_mat),
 | |
|                         np_vec_f=lambda vec_npy: np.broadcast_to(vec_npy, shape_vec),
 | |
|                         mlx_mat_f=lambda mat_mlx: mx.broadcast_to(mat_mlx, shape_mat),
 | |
|                         mlx_vec_f=lambda vec_mlx: mx.broadcast_to(vec_mlx, shape_vec),
 | |
|                     )
 | |
| 
 | |
|     def test_matrix_vector_attn(self):
 | |
|         # Multi-query style attention check
 | |
|         for dtype in self.dtypes:
 | |
|             # fmt: off
 | |
|             for (B,  D, n_kv_heads, factor,  qsl,  ksl) in (
 | |
|                 (1, 16,          8,      4,    1,  256),
 | |
|                 (1, 16,          8,      4,   32,  256),
 | |
|                 (1, 16,          8,      4,  256,    1),
 | |
|                 (4, 16,          8,      4,    1,  256),
 | |
|                 (4, 16,          8,      4,  256,    1),
 | |
|             ):
 | |
|             # fmt: on
 | |
|                 with self.subTest(
 | |
|                         B=B, # Batch size
 | |
|                         D=D, # Dimension of mm
 | |
|                         n_kv_heads=n_kv_heads, # key-value heads
 | |
|                         factor=factor, # factor to get query heads
 | |
|                         qsl=qsl, # Query sequence length
 | |
|                         ksl=ksl, # Key sequence length
 | |
|                         dtype=dtype # Data type
 | |
|                     ):
 | |
| 
 | |
|                     np_dtype = getattr(np, dtype)
 | |
| 
 | |
|                     # Fix shapes for kqv
 | |
|                     n_q_heads = n_kv_heads * factor
 | |
|                     Dk = D * n_kv_heads
 | |
|                     Dq = D * n_q_heads
 | |
|                     scale = 1. / math.sqrt(Dk)
 | |
| 
 | |
|                     shape_queries = (B, qsl, Dq)
 | |
|                     shape_keys = (B, ksl, Dk)
 | |
|                     shape_values = (B, ksl, Dk)
 | |
| 
 | |
|                     # Prepare numpy arrays
 | |
|                     q_np = np.random.uniform(-scale, scale, size=shape_queries).astype(np_dtype)
 | |
|                     k_np = np.random.uniform(-scale, scale, size=shape_keys).astype(np_dtype)
 | |
|                     v_np = np.random.uniform(-scale, scale, size=shape_values).astype(np_dtype)
 | |
| 
 | |
|                     # Rearrange to move heads up
 | |
|                     q_np_reshape = q_np.reshape(B, qsl, n_kv_heads, factor, -1).transpose(0, 2, 3, 1, 4)
 | |
|                     k_np_reshape = k_np.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 4, 1)
 | |
|                     v_np_reshape = v_np.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 1, 4)
 | |
| 
 | |
|                     # Do attn style matmul
 | |
|                     s_np = q_np_reshape @ k_np_reshape
 | |
|                     o_np = s_np @ v_np_reshape
 | |
|                     o_np = o_np.transpose(0, 3, 1, 2, 4).reshape(B, qsl, -1)
 | |
| 
 | |
|                     # Test mlx
 | |
|                     q_mx = mx.array(q_np)
 | |
|                     k_mx = mx.array(k_np)
 | |
|                     v_mx = mx.array(v_np)
 | |
| 
 | |
|                     # Rearrange to move heads up
 | |
|                     q_mx_reshape = q_mx.reshape(B, qsl, n_kv_heads, factor, -1).transpose(0, 2, 3, 1, 4)
 | |
|                     k_mx_reshape = k_mx.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 4, 1)
 | |
|                     v_mx_reshape = v_mx.reshape(B, ksl, n_kv_heads, 1, -1).transpose(0, 2, 3, 1, 4)
 | |
| 
 | |
|                     # Do attn style matmul
 | |
|                     s_mx = q_mx_reshape @ k_mx_reshape
 | |
|                     o_mx = (s_mx @ v_mx_reshape)
 | |
|                     o_mx = o_mx.transpose(0, 3, 1, 2, 4).reshape(B, qsl, -1)
 | |
| 
 | |
|                     # Check against np
 | |
|                     self.assertListEqual(list(s_np.shape), list(s_mx.shape))
 | |
|                     self.assertTrue(np.allclose(s_np, s_mx, atol=1e-4))
 | |
| 
 | |
|                     self.assertListEqual(list(o_np.shape), list(o_mx.shape))
 | |
|                     self.assertTrue(np.allclose(o_np, o_mx, atol=1e-4))
 | |
| 
 | |
|     def test_matrix_vector_edgecases(self):
 | |
|         for dtype in self.dtypes:
 | |
|             with self.subTest(dtype=dtype):
 | |
|                 np_dtype = getattr(np, dtype)
 | |
| 
 | |
|                 for in_vec_len in np.arange(1, 5):
 | |
|                     for out_vec_len in np.arange(1, 5):
 | |
|                         for batch_size in np.arange(1, 5):
 | |
|                             with self.subTest(
 | |
|                                 problem_shape=(batch_size, in_vec_len, out_vec_len)
 | |
|                             ):
 | |
|                                 # Matrix vector
 | |
|                                 with self.subTest(transpose=False):
 | |
|                                     a_npy = np.ones(
 | |
|                                         (batch_size, out_vec_len, in_vec_len),
 | |
|                                         dtype=np_dtype,
 | |
|                                     )
 | |
|                                     b_npy = np.ones(
 | |
|                                         (batch_size, in_vec_len, 1), dtype=np_dtype
 | |
|                                     )
 | |
|                                     for i in range(batch_size):
 | |
|                                         b_npy[i] *= i + 1.0
 | |
| 
 | |
|                                     a_mlx, b_mlx = map(mx.array, [a_npy, b_npy])
 | |
|                                     c_npy = a_npy @ b_npy
 | |
|                                     c_mlx = a_mlx @ b_mlx
 | |
| 
 | |
|                                     self.assertListEqual(
 | |
|                                         list(c_npy.shape), list(c_mlx.shape)
 | |
|                                     )
 | |
|                                     self.assertTrue(np.array_equal(c_mlx, c_npy))
 | |
| 
 | |
|                                 # Vector matrix
 | |
|                                 with self.subTest(transpose=True):
 | |
|                                     a_npy = np.ones(
 | |
|                                         (batch_size, out_vec_len, in_vec_len),
 | |
|                                         dtype=np_dtype,
 | |
|                                     )
 | |
|                                     b_npy = np.ones(
 | |
|                                         (batch_size, 1, out_vec_len), dtype=np_dtype
 | |
|                                     )
 | |
|                                     for i in range(batch_size):
 | |
|                                         b_npy[i] *= i + 1.0
 | |
| 
 | |
|                                     a_mlx, b_mlx = map(mx.array, [a_npy, b_npy])
 | |
|                                     c_npy = b_npy @ a_npy
 | |
|                                     c_mlx = b_mlx @ a_mlx
 | |
| 
 | |
|                                     self.assertListEqual(
 | |
|                                         list(c_npy.shape), list(c_mlx.shape)
 | |
|                                     )
 | |
|                                     self.assertTrue(np.array_equal(c_mlx, c_npy))
 | |
| 
 | |
|     def test_mismatch_stride_mm(self):
 | |
|         np.random.seed(0)
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (4, 16, 16)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (4, 16, 16)).astype(np.float32)
 | |
| 
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         # Matmul with batches
 | |
|         c_npy = a_npy[::2, :, :] @ b_npy[1::2, :, :]
 | |
|         c_mlx = a_mlx[::2, :, :] @ b_mlx[1::2, :, :]
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
 | |
| 
 | |
|         # Matvec with batches
 | |
|         c_npy = a_npy[::2, :, :] @ b_npy[1::2, :, 2:3]
 | |
|         c_mlx = a_mlx[::2, :, :] @ b_mlx[1::2, :, 2:3]
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
 | |
| 
 | |
|         # Matmul with slice
 | |
|         c_npy = a_npy[:, :8, :] @ b_npy[:, :, :8]
 | |
|         c_mlx = a_mlx[:, :8, :] @ b_mlx[:, :, :8]
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
 | |
| 
 | |
|         # Matmul with slice
 | |
|         c_npy = a_npy[:, :, :8] @ b_npy[:, :8, :]
 | |
|         c_mlx = a_mlx[:, :, :8] @ b_mlx[:, :8, :]
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
 | |
| 
 | |
|         # Matmul transpose with slice
 | |
|         c_npy = a_npy[:, :8, :] @ b_npy[:, :8, :].swapaxes(-1, -2)
 | |
|         c_mlx = a_mlx[:, :8, :] @ b_mlx[:, :8, :].swapaxes(-1, -2)
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
 | |
| 
 | |
|         # Matmul transpose with slice
 | |
|         c_npy = a_npy[:, :, :8] @ b_npy[:, :, :8].swapaxes(-1, -2)
 | |
|         c_mlx = a_mlx[:, :, :8] @ b_mlx[:, :, :8].swapaxes(-1, -2)
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
 | |
| 
 | |
|         # Matvec with slice
 | |
|         c_npy = a_npy[:, :8, :] @ b_npy[:, :, 6:7]
 | |
|         c_mlx = a_mlx[:, :8, :] @ b_mlx[:, :, 6:7]
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
 | |
| 
 | |
|         # Matvec with slice
 | |
|         c_npy = a_npy[:, :, :8] @ b_npy[:, 3:11, 2:3]
 | |
|         c_mlx = a_mlx[:, :, :8] @ b_mlx[:, 3:11, 2:3]
 | |
| 
 | |
|         self.assertListEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|         self.assertTrue(np.allclose(c_mlx, c_npy, atol=1e-5))
 | |
| 
 | |
|     def test_addmm(self):
 | |
|         np.random.seed(0)
 | |
|         # Batched matmul
 | |
|         alpha = 0.5
 | |
|         beta = 2.0
 | |
| 
 | |
|         # c must broadcast to the output shape
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.addmm(mx.zeros((2, 2, 2)), mx.zeros((2, 2)), mx.zeros((2, 2)))
 | |
| 
 | |
|         # Regular batched case
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (32, 16, 16)).astype(np.float32)
 | |
| 
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         for c_shape in ((1,), (1, 16), (32, 1, 16), (1, 128, 16)):
 | |
|             c_npy = np.ones(c_shape).astype(np.float32)
 | |
|             c_mlx = mx.array(c_npy)
 | |
| 
 | |
|             d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
 | |
|             d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
 | |
| 
 | |
|             self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
 | |
|             self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
 | |
| 
 | |
|         # Batched and transposed matmul
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         for c_shape in ((1,), (32, 1, 128), (1, 128)):
 | |
|             c_npy = np.ones(c_shape).astype(np.float32)
 | |
|             c_mlx = mx.array(c_npy)
 | |
| 
 | |
|             b_np_t = np.transpose(b_npy, (0, 2, 1))
 | |
|             b_mx_t = mx.transpose(b_mlx, (0, 2, 1))
 | |
| 
 | |
|             d_npy = alpha * (a_npy @ b_np_t) + beta * c_npy
 | |
|             d_mlx = mx.addmm(c_mlx, a_mlx, b_mx_t, alpha, beta)
 | |
| 
 | |
|             self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
 | |
|             self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
 | |
|         # Batched matmul with simple broadcast
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (16, 16)).astype(np.float32)
 | |
| 
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         for c_shape in ((1,), (1, 16), (32, 1, 16), (1, 128, 16)):
 | |
|             c_npy = np.ones(c_shape).astype(np.float32)
 | |
|             c_mlx = mx.array(c_npy)
 | |
| 
 | |
|             d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
 | |
|             d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
 | |
| 
 | |
|             self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
 | |
|             self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
 | |
|         # Matmul with vector
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (16,)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (32, 16, 128)).astype(np.float32)
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         for c_shape in ((1,), (128,), (32, 128)):
 | |
|             c_npy = np.ones(c_shape).astype(np.float32)
 | |
|             c_mlx = mx.array(c_npy)
 | |
| 
 | |
|             d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
 | |
|             d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
 | |
| 
 | |
|             self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
 | |
|             self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
 | |
| 
 | |
|         # Matmul with vector
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (32, 128, 16)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (16,)).astype(np.float32)
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         for c_shape in ((1,), (32, 128)):
 | |
|             c_npy = np.ones(c_shape).astype(np.float32)
 | |
|             c_mlx = mx.array(c_npy)
 | |
| 
 | |
|             d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
 | |
|             d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
 | |
| 
 | |
|             self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
 | |
|             self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
 | |
| 
 | |
|         # Split K specializtion
 | |
|         a_npy = np.random.normal(0.0, 1.0 / 128, (64, 4096)).astype(np.float32)
 | |
|         b_npy = np.random.normal(0.0, 1.0 / 128, (4096, 32)).astype(np.float32)
 | |
| 
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         for c_shape in ((1,), (1, 32), (64, 1), (64, 32)):
 | |
|             c_npy = np.ones(c_shape).astype(np.float32)
 | |
|             c_mlx = mx.array(c_npy)
 | |
| 
 | |
|             d_npy = alpha * (a_npy @ b_npy) + beta * c_npy
 | |
|             d_mlx = mx.addmm(c_mlx, a_mlx, b_mlx, alpha, beta)
 | |
| 
 | |
|             self.assertListEqual(list(d_npy.shape), list(d_mlx.shape))
 | |
|             self.assertTrue(np.allclose(d_mlx, d_npy, atol=1e-5))
 | |
| 
 | |
|         # Transposed c
 | |
|         a = mx.ones((10, 5)).T
 | |
|         b = mx.ones((5, 5))
 | |
|         out = mx.addmm(a, b, a, beta=1.5, alpha=0.5)
 | |
|         expected = 1.5 * a + 0.5 * (b @ a)
 | |
|         self.assertTrue(mx.allclose(expected, out))
 | |
| 
 | |
|         # Broadcast c
 | |
|         a = mx.ones((5, 5))
 | |
|         b = mx.ones((5, 5))
 | |
|         c = mx.ones((1, 5))
 | |
|         out = mx.addmm(c, a, b, beta=1.5, alpha=0.5)
 | |
|         expected = 1.5 * c + 0.5 * (a @ b)
 | |
|         self.assertTrue(mx.allclose(expected, out))
 | |
| 
 | |
|     def test_addmm_grad(self):
 | |
|         def make_ref_addmm(alpha, beta):
 | |
|             return lambda c, a, b: alpha * (a @ b) + beta * c
 | |
| 
 | |
|         def make_addmm(alpha, beta):
 | |
|             return lambda c, a, b: mx.addmm(c, a, b, alpha, beta)
 | |
| 
 | |
|         # B, M, N, K
 | |
|         shapes = ((1, 64, 32, 128), (4, 28, 24, 47), (1, 1, 24, 47))
 | |
| 
 | |
|         alpha = 2.0
 | |
|         beta = 0.5
 | |
| 
 | |
|         f_test = make_addmm(alpha, beta)
 | |
|         f_ref = make_ref_addmm(alpha, beta)
 | |
| 
 | |
|         for B, M, N, K in shapes:
 | |
|             cotan = mx.ones((B, M, N))
 | |
|             c = mx.random.normal((B, M, N))
 | |
|             a = mx.random.normal((B, M, K))
 | |
|             b = mx.random.normal((B, K, N))
 | |
| 
 | |
|             out_ref, dout_ref = mx.vjp(
 | |
|                 f_ref,
 | |
|                 [c, a, b],
 | |
|                 [cotan],
 | |
|             )
 | |
|             out_test, dout_test = mx.vjp(
 | |
|                 f_test,
 | |
|                 [c, a, b],
 | |
|                 [cotan],
 | |
|             )
 | |
| 
 | |
|             self.assertTrue(mx.allclose(out_ref[0], out_test[0], atol=1e-4).item())
 | |
| 
 | |
|             for r, t in zip(dout_ref, dout_test):
 | |
|                 self.assertEqual(r.shape, t.shape)
 | |
|                 self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
 | |
| 
 | |
|     def test_empty_matmul(self):
 | |
|         a = mx.array([[], []]).T
 | |
|         b = mx.array([[1.0, 2.0], [2.0, 3.0]])
 | |
|         c = a @ b
 | |
|         mx.eval(c)
 | |
|         self.assertEqual(c.shape, (0, 2))
 | |
| 
 | |
|         a = mx.array([[1.0, 2.0], [2.0, 3.0]])
 | |
|         b = mx.array([[], []])
 | |
|         c = a @ b
 | |
|         mx.eval(c)
 | |
|         self.assertEqual(c.shape, (2, 0))
 | |
| 
 | |
|         a = mx.array([[], []]).T
 | |
|         b = mx.array([[], []])
 | |
|         c = a @ b
 | |
|         mx.eval(c)
 | |
|         self.assertEqual(c.shape, (0, 0))
 | |
| 
 | |
|         c = mx.array(1.0, dtype=mx.float32)
 | |
|         a = mx.array([], dtype=mx.float32)
 | |
|         b = mx.array([], dtype=mx.float32)
 | |
|         out = mx.addmm(c, a, b)
 | |
|         self.assertEqual(out.item(), 1.0)
 | |
|         self.assertEqual(out.shape, ())
 | |
| 
 | |
|         a = mx.zeros(shape=(5, 0))
 | |
|         b = mx.zeros(shape=(0, 5))
 | |
|         c = mx.random.uniform(shape=(5, 5))
 | |
|         out = mx.addmm(c, a, b)
 | |
|         self.assertTrue(mx.allclose(out, c))
 | |
| 
 | |
|     def test_block_masked_matmul(self):
 | |
|         def ref_block_masked_mm(
 | |
|             a, b, block_size, out_mask=None, lhs_mask=None, rhs_mask=None
 | |
|         ):
 | |
|             # Get mask adjusted shapes
 | |
|             M = a.shape[-2]
 | |
|             N = b.shape[-1]
 | |
|             K = a.shape[-1]
 | |
| 
 | |
|             bsx_shape = np.broadcast_shapes(a.shape[:-2], b.shape[:-2])
 | |
| 
 | |
|             # Expand mask dims
 | |
|             def expand_mask(mask, block_size, Y, X):
 | |
|                 mask = mx.expand_dims(mask, (-3, -1))
 | |
|                 mask_shape = list(bsx_shape) + list(mask.shape[-4:])
 | |
|                 mask_shape[-1] = block_size
 | |
|                 x = mask_shape[-2] * block_size
 | |
|                 mask_shape[-3] = block_size
 | |
|                 y = mask_shape[-4] * block_size
 | |
|                 mask = mx.broadcast_to(mask, mask_shape)
 | |
|                 mask_shape = mask_shape[:-4] + [y, x]
 | |
|                 return mask.reshape(mask_shape)[..., :Y, :X]
 | |
| 
 | |
|             a_masked = a
 | |
|             b_masked = b
 | |
| 
 | |
|             if lhs_mask is not None:
 | |
|                 lhs_mask = expand_mask(lhs_mask, block_size, M, K).astype(mx.float32)
 | |
|                 a_masked = lhs_mask * a_masked
 | |
| 
 | |
|             if rhs_mask is not None:
 | |
|                 rhs_mask = expand_mask(rhs_mask, block_size, K, N).astype(mx.float32)
 | |
|                 b_masked = rhs_mask * b_masked
 | |
| 
 | |
|             out = a_masked @ b_masked
 | |
| 
 | |
|             if out_mask is not None:
 | |
|                 out_mask = expand_mask(out_mask, block_size, M, N).astype(mx.float32)
 | |
|                 out = out * out_mask
 | |
|             return out
 | |
| 
 | |
|         def run_test(a, b, block_size, out_mask, a_mask, b_mask, cotan):
 | |
|             def f_ref(a_, b_):
 | |
|                 return ref_block_masked_mm(a_, b_, block_size, out_mask, a_mask, b_mask)
 | |
| 
 | |
|             def f_test(a_, b_):
 | |
|                 return mx.block_masked_mm(a_, b_, block_size, out_mask, a_mask, b_mask)
 | |
| 
 | |
|             out_ref, dout_ref = mx.vjp(f_ref, [a, b], [cotan])
 | |
|             out_test, dout_test = mx.vjp(f_test, [a, b], [cotan])
 | |
| 
 | |
|             self.assertTrue(mx.allclose(out_ref[0], out_test[0], atol=1e-5).item())
 | |
| 
 | |
|             for r, t in zip(dout_ref, dout_test):
 | |
|                 self.assertEqual(r.shape, t.shape)
 | |
|                 self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
 | |
| 
 | |
|         def run_test_mask_vjp(a, b, block_size, out_mask, a_mask, b_mask, cotan):
 | |
|             def f_ref(a_, b_, a_mask_, b_mask_):
 | |
|                 return ref_block_masked_mm(
 | |
|                     a_, b_, block_size, out_mask, a_mask_, b_mask_
 | |
|                 )
 | |
| 
 | |
|             def f_test(a_, b_, a_mask_, b_mask_):
 | |
|                 return mx.block_masked_mm(
 | |
|                     a_, b_, block_size, out_mask, a_mask_, b_mask_
 | |
|                 )
 | |
| 
 | |
|             out_ref, dout_ref = mx.vjp(f_ref, [a, b, a_mask, b_mask], [cotan])
 | |
|             out_test, dout_test = mx.vjp(f_test, [a, b, a_mask, b_mask], [cotan])
 | |
| 
 | |
|             mx.eval((out_ref, dout_ref, out_test, dout_test))
 | |
| 
 | |
|             self.assertTrue(mx.allclose(out_ref[0], out_test[0], atol=1e-5).item())
 | |
| 
 | |
|             for r, t in zip(dout_ref, dout_test):
 | |
|                 self.assertEqual(r.shape, t.shape)
 | |
|                 self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
 | |
| 
 | |
|         def make_mask(tm_, tn_, batch, np_dtype):
 | |
|             arr_np_mask = np.random.normal(size=batch + (tm_, tn_)).astype(np_dtype)
 | |
|             arr_np_bool_mask = arr_np_mask < 0.0
 | |
|             arr_np_mask[arr_np_bool_mask] = 0.0
 | |
| 
 | |
|             return mx.array(arr_np_bool_mask), mx.array(arr_np_mask)
 | |
| 
 | |
|         def test_shape(
 | |
|             M,
 | |
|             N,
 | |
|             K,
 | |
|             block_size,
 | |
|             transpose=False,
 | |
|             np_dtype=np.float32,
 | |
|             batch_A=(),
 | |
|             batch_B=(),
 | |
|         ):
 | |
|             with self.subTest(
 | |
|                 M=M,
 | |
|                 N=N,
 | |
|                 K=K,
 | |
|                 block_size=block_size,
 | |
|                 np_dtype=np_dtype,
 | |
|                 transpose=transpose,
 | |
|                 batch_A=batch_A,
 | |
|                 batch_B=batch_B,
 | |
|             ):
 | |
|                 batch_out = np.broadcast_shapes(batch_A, batch_B)
 | |
|                 cotan = mx.ones(batch_out + (M, N))
 | |
| 
 | |
|                 a_np = np.random.normal(size=batch_A + (M, K)).astype(np_dtype)
 | |
|                 b_np = np.random.normal(size=batch_B + (K, N)).astype(np_dtype)
 | |
| 
 | |
|                 a_mx = mx.array(a_np)
 | |
|                 b_mx = mx.array(b_np)
 | |
| 
 | |
|                 tm = (M + block_size - 1) // block_size
 | |
|                 tn = (N + block_size - 1) // block_size
 | |
|                 tk = (K + block_size - 1) // block_size
 | |
| 
 | |
|                 a_mx_bool_mask, a_mx_mask = make_mask(tm, tk, batch_A, np_dtype)
 | |
|                 b_mx_bool_mask, b_mx_mask = make_mask(tk, tn, batch_B, np_dtype)
 | |
|                 out_mx_bool_mask, out_mx_mask = make_mask(tm, tn, batch_out, np_dtype)
 | |
| 
 | |
|                 # Boolean block masks
 | |
|                 run_test(
 | |
|                     a_mx,
 | |
|                     b_mx,
 | |
|                     block_size,
 | |
|                     out_mx_bool_mask,
 | |
|                     a_mx_bool_mask,
 | |
|                     b_mx_bool_mask,
 | |
|                     cotan,
 | |
|                 )
 | |
|                 run_test(a_mx, b_mx, block_size, out_mx_bool_mask, None, None, cotan)
 | |
|                 run_test(
 | |
|                     a_mx, b_mx, block_size, None, a_mx_bool_mask, b_mx_bool_mask, cotan
 | |
|                 )
 | |
| 
 | |
|                 # Float block masks
 | |
|                 run_test(
 | |
|                     a_mx, b_mx, block_size, out_mx_mask, a_mx_mask, b_mx_mask, cotan
 | |
|                 )
 | |
|                 run_test(a_mx, b_mx, block_size, None, a_mx_mask, b_mx_mask, cotan)
 | |
|                 run_test_mask_vjp(
 | |
|                     a_mx, b_mx, block_size, out_mx_mask, a_mx_mask, b_mx_mask, cotan
 | |
|                 )
 | |
|                 run_test_mask_vjp(
 | |
|                     a_mx, b_mx, block_size, None, a_mx_mask, b_mx_mask, cotan
 | |
|                 )
 | |
| 
 | |
|         shapes = (
 | |
|             (16, 16, 16, 32),
 | |
|             (64, 64, 16, 32),
 | |
|             (128, 128, 128, 32),
 | |
|             (256, 256, 128, 64),
 | |
|             (1, 128, 128, 32),
 | |
|             (256, 1, 128, 64),
 | |
|         )
 | |
| 
 | |
|         for M, N, K, block_size in shapes:
 | |
|             test_shape(M, N, K, block_size)
 | |
| 
 | |
|         # Test broadcasting
 | |
|         test_shape(64, 64, 64, 32, batch_A=(1, 2), batch_B=(2, 2))
 | |
|         test_shape(1, 128, 128, 32, batch_A=(1, 2), batch_B=(2, 2))
 | |
|         test_shape(128, 1, 128, 32, batch_A=(1, 2), batch_B=(2, 2))
 | |
| 
 | |
|         a_np = np.ones((128, 256)).astype(np.float32)
 | |
|         b_np = np.ones((128, 1)).astype(np.float32)
 | |
|         d_np = np.ones((1, 256)).astype(np.float32)
 | |
|         a_mask_np = np.random.normal(size=(4, 8)).astype(np.float32)
 | |
|         b_mask_np = np.ones((4, 1)).astype(np.bool_)
 | |
|         d_mask_np = np.ones((1, 8)).astype(np.bool_)
 | |
|         c_mask_np = np.random.normal(size=(8, 1)).astype(np.float32)
 | |
|         e_mask_np = np.random.normal(size=(1, 4)).astype(np.float32)
 | |
| 
 | |
|         a_mask_np[a_mask_np < 0.0] = 0.0
 | |
|         e_mask_np[e_mask_np < 0.0] = 0.0
 | |
|         c_mask_np[c_mask_np < 0.0] = 0.0
 | |
| 
 | |
|         a_mx = mx.array(a_np)
 | |
|         b_mx = mx.array(b_np)
 | |
|         d_mx = mx.array(d_np)
 | |
|         a_mask_mx = mx.array(a_mask_np)
 | |
|         b_mask_mx = mx.array(b_mask_np)
 | |
|         d_mask_mx = mx.array(d_mask_np)
 | |
|         e_mask_mx = mx.array(e_mask_np)
 | |
|         c_mask_mx = mx.array(c_mask_np)
 | |
| 
 | |
|         c_mx = mx.block_masked_mm(a_mx.T, b_mx, 32, c_mask_mx, a_mask_mx.T, b_mask_mx)
 | |
|         e_mx = mx.block_masked_mm(d_mx, a_mx.T, 32, e_mask_mx, d_mask_mx, a_mask_mx.T)
 | |
| 
 | |
|         a_mask_np = np.broadcast_to(np.expand_dims(a_mask_np, (-3, -1)), (4, 32, 8, 32))
 | |
|         a_mask_np = a_mask_np.reshape((128, 256))
 | |
|         a_np *= a_mask_np
 | |
| 
 | |
|         c_np = a_np.T @ b_np
 | |
|         e_np = d_np @ a_np.T
 | |
| 
 | |
|         c_mask_np = np.broadcast_to(np.expand_dims(c_mask_np, (-2)), (8, 32, 1))
 | |
|         c_mask_np = c_mask_np.reshape((256, 1))
 | |
|         c_np *= c_mask_np
 | |
| 
 | |
|         e_mask_np = np.broadcast_to(np.expand_dims(e_mask_np, (-1)), (1, 4, 32))
 | |
|         e_mask_np = e_mask_np.reshape((1, 128))
 | |
|         e_np *= e_mask_np
 | |
| 
 | |
|         self.assertTrue(np.allclose(c_mx, c_np, atol=1e-5))
 | |
|         self.assertTrue(np.allclose(e_mx, e_np, atol=1e-5))
 | |
| 
 | |
|     def test_gather_matmul(self):
 | |
|         def np_gather_mm(a, b, lhs_indices=None, rhs_indices=None):
 | |
|             a = a.reshape((-1, a.shape[-2], a.shape[-1]))
 | |
|             b = b.reshape((-1, b.shape[-2], b.shape[-1]))
 | |
|             lhs_indices = lhs_indices or np.arange(a.shape[0])
 | |
|             rhs_indices = rhs_indices or np.arange(b.shape[0])
 | |
|             a = a[lhs_indices, :, :]
 | |
|             b = b[rhs_indices, :, :]
 | |
|             out = a @ b
 | |
|             return out
 | |
| 
 | |
|         def test_shape(
 | |
|             M,
 | |
|             N,
 | |
|             K,
 | |
|             np_dtype=np.float32,
 | |
|             batch_A=(),
 | |
|             batch_B=(),
 | |
|             lhs_indices=None,
 | |
|             rhs_indices=None,
 | |
|         ):
 | |
|             with self.subTest(
 | |
|                 M=M,
 | |
|                 N=N,
 | |
|                 K=K,
 | |
|                 np_dtype=np_dtype,
 | |
|                 batch_A=batch_A,
 | |
|                 batch_B=batch_B,
 | |
|                 lhs_indices=lhs_indices,
 | |
|                 rhs_indices=rhs_indices,
 | |
|             ):
 | |
|                 a_np = np.random.normal(size=batch_A + (M, K)).astype(np_dtype)
 | |
|                 b_np = np.random.normal(size=batch_B + (K, N)).astype(np_dtype)
 | |
| 
 | |
|                 a_mx = mx.array(a_np)
 | |
|                 b_mx = mx.array(b_np)
 | |
| 
 | |
|                 out_np = np_gather_mm(a_np, b_np, lhs_indices, rhs_indices)
 | |
| 
 | |
|                 lhs_indices_mx = None if lhs_indices is None else mx.array(lhs_indices)
 | |
|                 rhs_indices_mx = None if rhs_indices is None else mx.array(rhs_indices)
 | |
| 
 | |
|                 out_mx = mx.gather_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
 | |
| 
 | |
|                 self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
 | |
| 
 | |
|         inputs = (
 | |
|             {
 | |
|                 "batch_A": (1,),
 | |
|                 "lhs_indices": (0,),
 | |
|                 "batch_B": (3,),
 | |
|                 "rhs_indices": (2, 1),
 | |
|             },
 | |
|             {
 | |
|                 "batch_A": (1,),
 | |
|                 "lhs_indices": None,
 | |
|                 "batch_B": (3,),
 | |
|                 "rhs_indices": (2, 1),
 | |
|             },
 | |
|             {
 | |
|                 "batch_A": (2,),
 | |
|                 "lhs_indices": None,
 | |
|                 "batch_B": (3,),
 | |
|                 "rhs_indices": (2, 1),
 | |
|             },
 | |
|             {
 | |
|                 "batch_A": (3,),
 | |
|                 "lhs_indices": (0, 2),
 | |
|                 "batch_B": (1,),
 | |
|                 "rhs_indices": (0,),
 | |
|             },
 | |
|             {
 | |
|                 "batch_A": (5,),
 | |
|                 "lhs_indices": (0, 2),
 | |
|                 "batch_B": (3,),
 | |
|                 "rhs_indices": (2, 1),
 | |
|             },
 | |
|             {
 | |
|                 "batch_A": (4, 2),
 | |
|                 "lhs_indices": (
 | |
|                     (7, 6),
 | |
|                     (5, 4),
 | |
|                     (1, 2),
 | |
|                 ),
 | |
|                 "batch_B": (4, 1),
 | |
|                 "rhs_indices": ((2,), (0,), (1,)),
 | |
|             },
 | |
|         )
 | |
| 
 | |
|         for kwargs in inputs:
 | |
|             test_shape(32, 32, 32, **kwargs)
 | |
|             test_shape(16, 1, 16, **kwargs)
 | |
| 
 | |
|         # Add tests for broadcasting
 | |
|         a_np = np.random.normal(size=(5, 32, 32)).astype(np.float32)
 | |
|         b_np = np.random.normal(size=(3, 32, 32)).astype(np.float32)
 | |
|         a_mx = mx.array(a_np)
 | |
|         b_mx = mx.array(b_np)
 | |
| 
 | |
|         # Numpy
 | |
|         a_np = a_np.reshape((5, 1, 32, 32))
 | |
|         b_np = b_np.reshape((1, 3, 32, 32))
 | |
| 
 | |
|         a_np = np.broadcast_to(a_np, (5, 4, 32, 32))
 | |
|         b_np = np.broadcast_to(b_np, (2, 3, 32, 32)).swapaxes(1, 0)
 | |
| 
 | |
|         lhs_indices = [0, 13, 12]
 | |
|         rhs_indices = [0, 3, 5]
 | |
| 
 | |
|         out_np = np_gather_mm(a_np, b_np, lhs_indices, rhs_indices)
 | |
| 
 | |
|         # MLX
 | |
|         a_mx = a_mx.reshape((5, 1, 32, 32))
 | |
|         b_mx = b_mx.reshape((1, 3, 32, 32))
 | |
| 
 | |
|         a_mx = mx.broadcast_to(a_mx, (5, 4, 32, 32))
 | |
|         b_mx = mx.broadcast_to(b_mx, (2, 3, 32, 32)).swapaxes(1, 0)
 | |
| 
 | |
|         lhs_indices_mx = mx.array(lhs_indices)
 | |
|         rhs_indices_mx = mx.array(rhs_indices)
 | |
| 
 | |
|         out_mx = mx.gather_mm(a_mx, b_mx, lhs_indices_mx, rhs_indices_mx)
 | |
| 
 | |
|         self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
 | |
| 
 | |
|         # Gemv test
 | |
|         a_np = np.random.normal(size=(5, 1, 32)).astype(np.float32)
 | |
|         b_np = np.random.normal(size=(3, 16, 32)).astype(np.float32)
 | |
|         a_mx = mx.array(a_np)
 | |
|         b_mx = mx.array(b_np)
 | |
| 
 | |
|         lhs_indices = [3, 1]
 | |
|         rhs_indices = [0, 2]
 | |
| 
 | |
|         b_np_t = np.swapaxes(b_np, -1, -2)
 | |
|         out_np = np_gather_mm(a_np, b_np_t, lhs_indices, rhs_indices)
 | |
| 
 | |
|         lhs_indices_mx = mx.array(lhs_indices)
 | |
|         rhs_indices_mx = mx.array(rhs_indices)
 | |
| 
 | |
|         b_mx_t = mx.swapaxes(b_mx, -1, -2)
 | |
|         out_mx = mx.gather_mm(a_mx, b_mx_t, lhs_indices_mx, rhs_indices_mx)
 | |
| 
 | |
|         self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5))
 | |
| 
 | |
|     def test_gather_matmul_grad(self):
 | |
|         lhs_indices = mx.array([[7, 6], [4, 1], [0, 2]], dtype=mx.uint32)
 | |
|         rhs_indices = mx.array([[2], [0], [1]], dtype=mx.uint32)
 | |
| 
 | |
|         def f_ref(a, b):
 | |
|             lhs_indices_ = mx.broadcast_to(lhs_indices, (3, 2))
 | |
|             rhs_indices_ = mx.broadcast_to(rhs_indices, (3, 2))
 | |
|             M = a.shape[-2]
 | |
|             N = b.shape[-1]
 | |
|             K = a.shape[-1]
 | |
| 
 | |
|             a = a.reshape((-1, M, K))
 | |
|             b = b.reshape((-1, K, N))
 | |
| 
 | |
|             a = mx.take(a, lhs_indices_, 0)
 | |
|             b = mx.take(b, rhs_indices_, 0)
 | |
| 
 | |
|             return a @ b
 | |
| 
 | |
|         def f_test(a, b):
 | |
|             return mx.gather_mm(a, b, lhs_indices, rhs_indices)
 | |
| 
 | |
|         a_mx = mx.random.normal((4, 2, 32, 32))
 | |
|         b_mx = mx.random.normal((4, 1, 32, 32))
 | |
| 
 | |
|         out_test = f_test(a_mx, b_mx)
 | |
|         out_ref = f_ref(a_mx, b_mx)
 | |
| 
 | |
|         self.assertTrue(mx.allclose(out_test, out_ref, atol=1e-5))
 | |
| 
 | |
|         cotan = mx.ones_like(out_test)
 | |
|         out_ref, dout_ref = mx.vjp(
 | |
|             f_ref,
 | |
|             [a_mx, b_mx],
 | |
|             [cotan],
 | |
|         )
 | |
|         out_test, dout_test = mx.vjp(
 | |
|             f_test,
 | |
|             [a_mx, b_mx],
 | |
|             [cotan],
 | |
|         )
 | |
| 
 | |
|         for r, t in zip(dout_ref, dout_test):
 | |
|             self.assertEqual(r.shape, t.shape)
 | |
|             self.assertTrue(mx.allclose(r, t, atol=1e-4).item())
 | |
| 
 | |
|     def test_gather_mm_sorted(self):
 | |
|         def gather_mm_ref(a, b, rhs):
 | |
|             b = b[rhs]
 | |
|             return a @ b
 | |
| 
 | |
|         def gather_mm_test(a, b, rhs):
 | |
|             return mx.gather_mm(a, b, rhs_indices=rhs, sorted_indices=True)
 | |
| 
 | |
|         a = mx.random.normal((100, 1, 100))
 | |
|         b = mx.random.normal((8, 100, 100))
 | |
|         rhs = mx.sort(mx.random.randint(0, 8, shape=(100,)))
 | |
| 
 | |
|         c1 = gather_mm_ref(a, b, rhs)
 | |
|         c2 = gather_mm_test(a, b, rhs)
 | |
|         self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
 | |
| 
 | |
|         cotan = mx.random.normal(c1.shape)
 | |
|         c1, dc1 = mx.vjp(
 | |
|             lambda a, b: gather_mm_ref(a, b, rhs),
 | |
|             [a, b],
 | |
|             [cotan],
 | |
|         )
 | |
|         c2, dc2 = mx.vjp(
 | |
|             lambda a, b: gather_mm_test(a, b, rhs),
 | |
|             [a, b],
 | |
|             [cotan],
 | |
|         )
 | |
|         self.assertTrue(mx.allclose(c1[0], c2[0], atol=1e-4))
 | |
|         self.assertTrue(mx.allclose(dc1[0], dc2[0], atol=1e-4))
 | |
|         self.assertTrue(mx.allclose(dc1[1], dc2[1], atol=1e-4))
 | |
| 
 | |
|     def test_segmented_mm(self):
 | |
|         def segmented_mm_ref(a, b, s):
 | |
|             s = s.tolist()
 | |
|             c = []
 | |
|             for s1, s2 in s:
 | |
|                 c.append(a[:, s1:s2] @ b[s1:s2, :])
 | |
|             return mx.stack(c, axis=0)
 | |
| 
 | |
|         shapes = [
 | |
|             (10, 10, 10),
 | |
|             (10, 10, 1000),
 | |
|             (1000, 1000, 1000),
 | |
|         ]
 | |
|         all_segments = [[0, 0, 1.0], [0, 0.5, 1.0], [r / 9 for r in range(10)]]
 | |
| 
 | |
|         for M, N, K in shapes:
 | |
|             for s in all_segments:
 | |
|                 segments = []
 | |
|                 for i in range(len(s) - 1):
 | |
|                     segments.append([s[i], s[i + 1]])
 | |
|                 segments = mx.array(segments)
 | |
|                 segments = mx.minimum(K - 1, (K * segments).astype(mx.uint32))
 | |
|                 a = mx.random.normal((M, K))
 | |
|                 b = mx.random.normal((K, N))
 | |
|                 c1 = segmented_mm_ref(a, b, segments)
 | |
|                 c2 = mx.segmented_mm(a, b, segments)
 | |
|                 self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
 | |
| 
 | |
|                 a = mx.random.normal((K, M))
 | |
|                 b = mx.random.normal((K, N))
 | |
|                 c1 = segmented_mm_ref(a.T, b, segments)
 | |
|                 c2 = mx.segmented_mm(a.T, b, segments)
 | |
|                 self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
 | |
| 
 | |
|                 a = mx.random.normal((M, K))
 | |
|                 b = mx.random.normal((N, K))
 | |
|                 c1 = segmented_mm_ref(a, b.T, segments)
 | |
|                 c2 = mx.segmented_mm(a, b.T, segments)
 | |
|                 self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
 | |
| 
 | |
|                 a = mx.random.normal((K, M))
 | |
|                 b = mx.random.normal((N, K))
 | |
|                 c1 = segmented_mm_ref(a.T, b.T, segments)
 | |
|                 c2 = mx.segmented_mm(a.T, b.T, segments)
 | |
|                 self.assertTrue(mx.allclose(c1, c2, atol=1e-4))
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.ones((2, 10, 10))
 | |
|             s = mx.array([[0, 5], [5, 10]]).astype(mx.uint32)
 | |
|             mx.segmented_mm(a, a, s)
 | |
| 
 | |
|         a = mx.ones((10, 1000))
 | |
|         s = mx.random.randint(0, 16, shape=(1000,))
 | |
|         s = mx.zeros(16, dtype=s.dtype).at[s].add(1)
 | |
|         s = mx.sort(s)
 | |
|         s = mx.cumsum(s)
 | |
|         s = mx.concatenate([mx.array([0]), s])
 | |
|         s = mx.as_strided(s, (16, 2), (1, 1))
 | |
|         s = mx.reshape(s, (2, 2, 4, 2))
 | |
|         c = mx.segmented_mm(a, a.T, s)
 | |
|         self.assertEqual(c.shape, (2, 2, 4, 10, 10))
 | |
| 
 | |
|     def test_gemv_gemm_same_precision(self):
 | |
|         mx.random.seed(0)
 | |
|         N = 256
 | |
|         if mx.is_available(mx.gpu):
 | |
|             t = mx.bfloat16
 | |
|             a = mx.random.normal([1, N]).astype(t)
 | |
|             b = mx.concatenate([a, a], axis=0).astype(t)
 | |
|             c = mx.random.normal([N, 64]).astype(t)
 | |
|             out_gemv = a @ c
 | |
|             out_gemm = (b @ c)[0]
 | |
|             self.assertTrue(mx.allclose(out_gemv, out_gemm))
 | |
| 
 | |
|     def test_complex_gemv(self):
 | |
|         M = 16
 | |
|         N = 50
 | |
| 
 | |
|         def rand(shape):
 | |
|             return mx.random.uniform(shape=shape) + 1j * mx.random.uniform(shape=shape)
 | |
| 
 | |
|         a = rand((M, N))
 | |
|         b = rand((N, 1))
 | |
|         c = mx.matmul(a, b)
 | |
|         c_np = np.matmul(a, b)
 | |
|         self.assertTrue(np.allclose(c, c_np))
 | |
| 
 | |
|         # Transposed
 | |
|         a = rand((N, M))
 | |
|         b = rand((N, 1))
 | |
|         c = mx.matmul(a.T, b)
 | |
|         c_np = np.matmul(np.array(a).T, b)
 | |
|         self.assertTrue(np.allclose(c, c_np))
 | |
| 
 | |
|         # Check shapes
 | |
|         a = mx.random.normal((2, 3)).astype(mx.complex64)
 | |
|         b = mx.random.normal((3,))
 | |
|         self.assertEqual((a @ b).shape, (2,))
 | |
| 
 | |
|         a = mx.random.normal((2, 3)).astype(mx.complex64)
 | |
|         b = mx.random.normal((3,))
 | |
|         c = mx.random.normal((2,))
 | |
|         self.assertEqual(mx.addmm(c, a, b).shape, (2,))
 | |
| 
 | |
|     def test_complex_gemm(self):
 | |
|         M = 16
 | |
|         K = 50
 | |
|         N = 32
 | |
| 
 | |
|         def rand(shape):
 | |
|             return mx.random.uniform(shape=shape) + 1j * mx.random.uniform(shape=shape)
 | |
| 
 | |
|         a = rand((M, K))
 | |
|         b = rand((K, N))
 | |
|         c = mx.matmul(a, b)
 | |
|         c_np = np.matmul(a, b)
 | |
|         self.assertTrue(np.allclose(c, c_np))
 | |
| 
 | |
|         # Test addmm
 | |
|         a = rand((M, K))
 | |
|         b = rand((K, N))
 | |
|         c = rand((M, N))
 | |
|         out = mx.addmm(c, a, b, 2.0, 2.0)
 | |
|         out_np = 2.0 * np.matmul(a, b) + 2.0 * c
 | |
|         self.assertTrue(np.allclose(out, out_np))
 | |
| 
 | |
|         # complex with real
 | |
|         a = rand((M, K)).real
 | |
|         b = rand((K, N))
 | |
|         c = mx.matmul(a, b)
 | |
|         c_np = np.matmul(a, b)
 | |
|         self.assertTrue(np.allclose(out, out_np))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     mlx_tests.MLXTestRunner()
 | 
