mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			1043 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1043 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023-2024 Apple Inc.
 | |
| 
 | |
| import gc
 | |
| import inspect
 | |
| import io
 | |
| import math
 | |
| import unittest
 | |
| from functools import partial, wraps
 | |
| from io import StringIO
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx_tests
 | |
| 
 | |
| 
 | |
| class TestCompile(mlx_tests.MLXTestCase):
 | |
|     def test_simple_compile(self):
 | |
|         def fun(x, y):
 | |
|             return x + y
 | |
| 
 | |
|         compiled_fn = mx.compile(fun)
 | |
|         compiled_fn = mx.compile(fun)
 | |
|         x = mx.array(1.0)
 | |
|         y = mx.array(1.0)
 | |
|         out = compiled_fn(x, y)
 | |
|         self.assertEqual(out.item(), 2.0)
 | |
| 
 | |
|         # Try again
 | |
|         out = compiled_fn(x, y)
 | |
|         self.assertEqual(out.item(), 2.0)
 | |
| 
 | |
|         # Change sizes
 | |
|         x = mx.array([1.0, 2.0])
 | |
|         out = compiled_fn(x, y)
 | |
|         self.assertTrue(mx.array_equal(out, mx.array([2.0, 3.0])))
 | |
| 
 | |
|         y = mx.array([1.0, 2.0])
 | |
|         out = compiled_fn(x, y)
 | |
|         self.assertTrue(mx.array_equal(out, mx.array([2.0, 4.0])))
 | |
| 
 | |
|         # Change types
 | |
|         x = mx.array([1, 2], mx.int32)
 | |
|         y = mx.array([1, 2], mx.int32)
 | |
|         out = compiled_fn(x, y)
 | |
|         self.assertEqual(out.dtype, mx.int32)
 | |
|         self.assertTrue(mx.array_equal(out, mx.array([2, 4])))
 | |
| 
 | |
|     def test_compile_grad(self):
 | |
|         def loss_fn(x):
 | |
|             return mx.exp(x).sum()
 | |
| 
 | |
|         grad_fn = mx.grad(loss_fn)
 | |
| 
 | |
|         x = mx.array([0.5, -0.5, 1.2])
 | |
|         dfdx = grad_fn(x)
 | |
|         compile_grad_fn = mx.compile(grad_fn)
 | |
|         c_dfdx = grad_fn(x)
 | |
| 
 | |
|         self.assertTrue(mx.allclose(c_dfdx, dfdx))
 | |
| 
 | |
|         # Run it again without calling compile
 | |
|         c_dfdx = compile_grad_fn(x)
 | |
|         self.assertTrue(mx.allclose(c_dfdx, dfdx))
 | |
| 
 | |
|         # Run it again with calling compile
 | |
|         c_dfdx = mx.compile(grad_fn)(x)
 | |
|         self.assertTrue(mx.allclose(c_dfdx, dfdx))
 | |
| 
 | |
|         # Value and grad
 | |
|         def loss_fn(x):
 | |
|             return mx.exp(x).sum(), mx.sin(x)
 | |
| 
 | |
|         val_and_grad_fn = mx.value_and_grad(loss_fn)
 | |
|         (loss, val), dfdx = val_and_grad_fn(x)
 | |
|         (c_loss, c_val), c_dfdx = mx.compile(val_and_grad_fn)(x)
 | |
| 
 | |
|         self.assertTrue(mx.allclose(c_dfdx, dfdx))
 | |
|         self.assertTrue(mx.allclose(c_loss, loss))
 | |
|         self.assertTrue(mx.allclose(c_val, val))
 | |
| 
 | |
|     def test_compile_inputs_with_primitives(self):
 | |
|         x = mx.array([1, 2, 3])
 | |
|         y = mx.array([1, 2, 3])
 | |
|         for _ in range(5):
 | |
|             x = x + y
 | |
|             y = y + 1
 | |
| 
 | |
|         def fun(x, y):
 | |
|             return x * y
 | |
| 
 | |
|         out = fun(x, y)
 | |
| 
 | |
|         x = mx.array([1, 2, 3])
 | |
|         y = mx.array([1, 2, 3])
 | |
|         for _ in range(5):
 | |
|             x = x + y
 | |
|             y = y + 1
 | |
| 
 | |
|         c_out = mx.compile(fun)(x, y)
 | |
|         self.assertTrue(mx.array_equal(out, c_out))
 | |
| 
 | |
|         # Try again
 | |
|         c_out = mx.compile(fun)(x, y)
 | |
|         self.assertTrue(mx.array_equal(out, c_out))
 | |
| 
 | |
|     def test_compile_with_closure(self):
 | |
|         x = mx.array(1)
 | |
| 
 | |
|         def closure(y):
 | |
|             return x + y
 | |
| 
 | |
|         compiled = mx.compile(closure)
 | |
|         out = compiled(mx.array(1))
 | |
|         self.assertEqual(out.item(), 2)
 | |
| 
 | |
|         # Try again
 | |
|         out = compiled(mx.array(1))
 | |
|         self.assertEqual(out.item(), 2)
 | |
| 
 | |
|         # Change the shape of the enclosed variable
 | |
|         x = mx.array([1, 2])
 | |
|         out = compiled(mx.array(1))
 | |
| 
 | |
|         # We still get the original input (closures are not updated)
 | |
|         self.assertEqual(out.item(), 2)
 | |
| 
 | |
|         # Try with a tree of enclosed variables
 | |
|         x = {"a": mx.array(1), "b": mx.array(2)}
 | |
| 
 | |
|         def closure(y):
 | |
|             return x["a"] + y + x["b"]
 | |
| 
 | |
|         compiled = mx.compile(closure)
 | |
|         out = compiled(mx.array(1))
 | |
|         self.assertEqual(out.item(), 4)
 | |
| 
 | |
|         # Change the shape of one input
 | |
|         x["a"] = mx.array([4, 5])
 | |
|         out = compiled(mx.array(1))
 | |
|         self.assertEqual(out.item(), 4)
 | |
| 
 | |
|         x["b"] = mx.array([-6, -8])
 | |
|         out = compiled(mx.array(1))
 | |
|         self.assertEqual(out.item(), 4)
 | |
| 
 | |
|         # Enclosed variable is not evaluated yet
 | |
|         x = mx.array(1)
 | |
|         x = x + x
 | |
| 
 | |
|         def closure(y):
 | |
|             return x + y
 | |
| 
 | |
|         compiled = mx.compile(closure)
 | |
|         out = compiled(mx.array(2))
 | |
|         self.assertEqual(out.item(), 4)
 | |
| 
 | |
|         # And again
 | |
|         out = compiled(mx.array(2))
 | |
|         self.assertEqual(out.item(), 4)
 | |
| 
 | |
|     def test_function_creates_array(self):
 | |
|         def fun(x):
 | |
|             return x + mx.array(1)
 | |
| 
 | |
|         cfun = mx.compile(fun)
 | |
|         out = cfun(mx.array(3))
 | |
|         self.assertEqual(out.item(), 4)
 | |
| 
 | |
|         # And again
 | |
|         out = cfun(mx.array(3))
 | |
|         self.assertEqual(out.item(), 4)
 | |
| 
 | |
|     def test_enable_disable(self):
 | |
|         def fun(x):
 | |
|             y = x + 1
 | |
|             z = x + 1
 | |
|             return y + z
 | |
| 
 | |
|         def count_prims(outputs):
 | |
|             buf = io.StringIO()
 | |
|             mx.export_to_dot(buf, outputs)
 | |
|             buf.seek(0)
 | |
|             return len([l for l in buf.read().split() if "label" in l])
 | |
| 
 | |
|         x = mx.array(1.0)
 | |
|         cfun = mx.compile(fun)
 | |
|         n_compiled = count_prims(cfun(x))
 | |
| 
 | |
|         # Check disabled
 | |
|         mx.disable_compile()
 | |
|         n_uncompiled = count_prims(cfun(x))
 | |
|         self.assertTrue(n_compiled < n_uncompiled)
 | |
| 
 | |
|         # Check renabled
 | |
|         mx.enable_compile()
 | |
|         n_enable_compiled = count_prims(cfun(x))
 | |
|         self.assertEqual(n_compiled, n_enable_compiled)
 | |
| 
 | |
|     def test_compile_two_input_grad(self):
 | |
|         def loss(w, x):
 | |
|             y = x * w
 | |
|             return (y * mx.exp(y)).sum()
 | |
| 
 | |
|         x = mx.array([1.0, 0.5, 2.0, -0.5])
 | |
|         w = mx.array([-1.0, 0.3, 1.0, -0.9])
 | |
| 
 | |
|         expected_grad = mx.grad(loss)(w, x)
 | |
|         compiled_grad = mx.compile(mx.grad(loss))(w, x)
 | |
|         self.assertTrue(mx.allclose(expected_grad, compiled_grad))
 | |
| 
 | |
|     def test_vmap_compiled(self):
 | |
|         def simple_unary(x):
 | |
|             return -mx.exp(x)
 | |
| 
 | |
|         x = mx.array([[1.0, 2.0], [2.0, 3.0]])
 | |
| 
 | |
|         expected_out = mx.vmap(simple_unary)(x)
 | |
|         out = mx.vmap(mx.compile(simple_unary))(x)
 | |
|         self.assertTrue(mx.allclose(expected_out, out))
 | |
| 
 | |
|         def simple_binary(x, y):
 | |
|             return mx.abs(mx.exp(x + y) + y)
 | |
| 
 | |
|         x = mx.array([[1.0, -3.0], [0.5, -0.5]])
 | |
|         y = mx.array([[2.0, -1.0], [0.25, -0.25]])
 | |
| 
 | |
|         expected_out = mx.vmap(simple_binary)(x, y)
 | |
|         out = mx.vmap(mx.compile(simple_binary))(x, y)
 | |
|         self.assertTrue(mx.allclose(expected_out, out))
 | |
| 
 | |
|         expected_out = mx.vmap(simple_binary, in_axes=(0, 1))(x, y)
 | |
|         out = mx.vmap(mx.compile(simple_binary), in_axes=(0, 1))(x, y)
 | |
|         self.assertTrue(mx.allclose(expected_out, out))
 | |
| 
 | |
|         y = mx.array([0.25, -0.25])
 | |
|         expected_out = mx.vmap(simple_binary, in_axes=(0, None))(x, y)
 | |
|         out = mx.vmap(mx.compile(simple_binary), in_axes=(0, None))(x, y)
 | |
|         self.assertTrue(mx.allclose(expected_out, out))
 | |
| 
 | |
|         def simple_unary_outer(x):
 | |
|             x = mx.abs(x)
 | |
| 
 | |
|             @mx.compile
 | |
|             def simple_unary_inner(z):
 | |
|                 return -mx.exp(x)
 | |
| 
 | |
|             return simple_unary_inner(x)
 | |
| 
 | |
|         expected_out = -mx.exp(mx.abs(x))
 | |
|         out = mx.vmap(simple_unary_outer)(x)
 | |
|         self.assertTrue(mx.allclose(expected_out, out))
 | |
| 
 | |
|     def test_vjp_vjp_compiled(self):
 | |
|         def simple_unary(x):
 | |
|             return -mx.exp(x)
 | |
| 
 | |
|         x = mx.array([[1.0, 2.0], [2.0, 3.0]])
 | |
|         y = mx.array([[1.0, 1.0], [1.0, 1.0]])
 | |
| 
 | |
|         expected_out, expected_vjp_out = mx.vjp(simple_unary, (x,), (y,))
 | |
|         out, vjp_out = mx.vjp(mx.compile(simple_unary), (x,), (y,))
 | |
|         self.assertTrue(mx.allclose(expected_vjp_out[0], vjp_out[0]))
 | |
|         self.assertTrue(mx.allclose(expected_out[0], out[0]))
 | |
| 
 | |
|         expected_out, expected_jvp_out = mx.jvp(simple_unary, (x,), (y,))
 | |
|         out, jvp_out = mx.jvp(mx.compile(simple_unary), (x,), (y,))
 | |
|         self.assertTrue(mx.allclose(expected_jvp_out[0], jvp_out[0]))
 | |
|         self.assertTrue(mx.allclose(expected_out[0], out[0]))
 | |
| 
 | |
|         def simple_binary(x, y):
 | |
|             return mx.abs(mx.exp(x + y) + y)
 | |
| 
 | |
|         x = mx.array([[1.0, -3.0], [0.5, -0.5]])
 | |
|         y = mx.array([[2.0, -1.0], [0.25, -0.25]])
 | |
|         cotans = mx.ones_like(x)
 | |
| 
 | |
|         expected_out, expected_vjp_out = mx.vjp(simple_binary, (x, y), (cotans,))
 | |
|         out, vjp_out = mx.vjp(mx.compile(simple_binary), (x, y), (cotans,))
 | |
|         self.assertTrue(mx.allclose(expected_out[0], out[0]))
 | |
|         self.assertTrue(mx.allclose(expected_vjp_out[0], vjp_out[0]))
 | |
|         self.assertTrue(mx.allclose(expected_vjp_out[1], vjp_out[1]))
 | |
| 
 | |
|         tans = (mx.ones_like(x), mx.ones_like(y))
 | |
|         expected_out, expected_jvp_out = mx.jvp(simple_binary, (x, y), tans)
 | |
|         out, jvp_out = mx.jvp(mx.compile(simple_binary), (x, y), tans)
 | |
|         self.assertTrue(mx.allclose(expected_jvp_out[0], jvp_out[0]))
 | |
|         self.assertTrue(mx.allclose(expected_out[0], out[0]))
 | |
| 
 | |
|     def test_transform_over_eval_compiled(self):
 | |
|         def outer(x):
 | |
|             y = mx.exp(mx.abs(x))
 | |
|             mx.eval(y)
 | |
|             return y.sum()
 | |
| 
 | |
|         x = mx.array([2.0, -1.0, 0.5])
 | |
|         dfdx = mx.grad(outer)(x)
 | |
| 
 | |
|         @mx.compile
 | |
|         def simple_unary(x):
 | |
|             return mx.exp(mx.abs(x))
 | |
| 
 | |
|         def outer(x):
 | |
|             y = simple_unary(x)
 | |
|             mx.eval(y)
 | |
|             return y.sum()
 | |
| 
 | |
|         cdfdx = mx.grad(outer)(x)
 | |
|         self.assertTrue(mx.allclose(dfdx, cdfdx))
 | |
| 
 | |
|     def test_compile_capture(self):
 | |
|         # Test update captured state outside compiled function
 | |
|         state = {"y": mx.array(2)}
 | |
| 
 | |
|         @partial(mx.compile, inputs=state)
 | |
|         def test_state(x):
 | |
|             x = x + state["y"]
 | |
|             return x
 | |
| 
 | |
|         test_state(mx.array(1))
 | |
|         # Check the state is unchanged
 | |
|         self.assertEqual(state["y"], 2)
 | |
| 
 | |
|         # Check the udpated state is used
 | |
|         state["y"] = mx.array(3)
 | |
|         out = test_state(mx.array(1))
 | |
|         self.assertEqual(out.item(), 4)
 | |
| 
 | |
|         # Capture list
 | |
|         state = [mx.array(2)]
 | |
| 
 | |
|         @partial(mx.compile, inputs=state)
 | |
|         def test_state(x):
 | |
|             x = x + state[0]
 | |
|             return x
 | |
| 
 | |
|         out = test_state(mx.array(1))
 | |
|         self.assertEqual(out.item(), 3)
 | |
|         state[0] = mx.array(3)
 | |
|         out = test_state(mx.array(1))
 | |
|         self.assertEqual(out.item(), 4)
 | |
| 
 | |
|         # Capture tuple of list
 | |
|         state = ([mx.array(2)],)
 | |
| 
 | |
|         @partial(mx.compile, inputs=state)
 | |
|         def test_state(x):
 | |
|             x = x + state[0][0]
 | |
|             return x
 | |
| 
 | |
|         out = test_state(mx.array(1))
 | |
|         self.assertEqual(out.item(), 3)
 | |
|         state[0][0] = mx.array(3)
 | |
|         out = test_state(mx.array(1))
 | |
|         self.assertEqual(out.item(), 4)
 | |
| 
 | |
|         # Test state updated inside compiled function
 | |
|         state = {}
 | |
| 
 | |
|         @partial(mx.compile, outputs=state)
 | |
|         def test_state(x):
 | |
|             state["y"] = x + 3
 | |
|             return mx.abs(x)
 | |
| 
 | |
|         test_state(mx.array(-1))
 | |
|         self.assertEqual(state["y"].item(), 2)
 | |
| 
 | |
|         # Test state changed inside compiled function
 | |
|         # triggers recompile
 | |
|         state = {}
 | |
| 
 | |
|         @partial(mx.compile, inputs=state, outputs=state)
 | |
|         def test_state(x):
 | |
|             y = state.get("y", mx.array(0))
 | |
|             state["y"] = x + y
 | |
|             return x + 2 * y
 | |
| 
 | |
|         test_state(mx.array(1))
 | |
|         self.assertEqual(state["y"].item(), 1)
 | |
|         test_state(mx.array(1))
 | |
|         self.assertEqual(state["y"].item(), 2)
 | |
| 
 | |
|     def test_compile_rng(self):
 | |
|         @partial(mx.compile, inputs=mx.random.state, outputs=mx.random.state)
 | |
|         def fun():
 | |
|             return mx.random.uniform(shape=(10, 10))
 | |
| 
 | |
|         self.assertFalse(mx.allclose(fun(), fun(), 1e-2, 1e-2))
 | |
| 
 | |
|     def test_compile_kwargs(self):
 | |
|         @mx.compile
 | |
|         def fun(x, y, z):
 | |
|             return x + y + z
 | |
| 
 | |
|         x = mx.array(1)
 | |
|         y = mx.array(2)
 | |
|         z = mx.array(3)
 | |
|         out = fun(x, y=y, z=z)
 | |
|         self.assertEqual(out.item(), 6)
 | |
| 
 | |
|     def test_shapeless_compile(self):
 | |
|         y = 1
 | |
| 
 | |
|         @partial(mx.compile, shapeless=True)
 | |
|         def fun(x):
 | |
|             return x + y
 | |
| 
 | |
|         x = mx.array([1, 2])
 | |
|         self.assertTrue(mx.array_equal(fun(x), mx.array([2, 3])))
 | |
| 
 | |
|         # The function is not recompiled, so the change
 | |
|         # to y should not be reflected in the output
 | |
|         y = 2
 | |
|         x = mx.array([1, 2, 3])
 | |
|         self.assertTrue(mx.array_equal(fun(x), mx.array([2, 3, 4])))
 | |
| 
 | |
|         # Type change recompiles
 | |
|         x = mx.array([1.0, 2.0, 3.0])
 | |
|         self.assertTrue(mx.array_equal(fun(x), mx.array([3.0, 4.0, 5.0])))
 | |
| 
 | |
|         # Dim change recompiles
 | |
|         x = mx.array([[1, 2, 3]])
 | |
|         self.assertTrue(mx.array_equal(fun(x), mx.array([[3, 4, 5]])))
 | |
| 
 | |
|     def test_shapeless_compile_with_broadcasts(self):
 | |
|         x = mx.ones((2, 2))
 | |
|         y = mx.array([2, 2])
 | |
| 
 | |
|         def fun(x, y):
 | |
|             return x * y
 | |
| 
 | |
|         cfun = mx.compile(fun, shapeless=True)
 | |
|         self.assertTrue(mx.array_equal(cfun(x, y), fun(x, y)))
 | |
|         self.assertTrue(mx.array_equal(cfun(y, x), fun(y, x)))
 | |
|         y = mx.array([[3]])
 | |
|         self.assertTrue(mx.array_equal(cfun(x, y), fun(x, y)))
 | |
|         self.assertTrue(mx.array_equal(cfun(y, x), fun(y, x)))
 | |
| 
 | |
|     def test_shapeless_compile_with_reduction(self):
 | |
|         # Test shapeless compile with a reduction
 | |
|         z = 1
 | |
| 
 | |
|         @partial(mx.compile, shapeless=True)
 | |
|         def fun(x, y):
 | |
|             return x + y.sum(0, keepdims=True) + z
 | |
| 
 | |
|         x = mx.ones((2, 2), mx.int32)
 | |
|         y = mx.ones((2, 2), mx.int32)
 | |
|         self.assertTrue(mx.array_equal(fun(x, y), mx.full(shape=(2, 2), vals=4)))
 | |
|         x = mx.ones((3, 3), mx.int32)
 | |
|         y = mx.ones((3, 3), mx.int32)
 | |
|         z = 2
 | |
|         self.assertTrue(mx.array_equal(fun(x, y), mx.full(shape=(3, 3), vals=5)))
 | |
| 
 | |
|         x1 = mx.array([[1, 2], [3, 4], [5, 6]])
 | |
|         x2 = mx.array([[1, 2]])
 | |
| 
 | |
|         def fun(x):
 | |
|             return x * x.sum(-1, keepdims=True)
 | |
| 
 | |
|         cfun = mx.compile(fun, shapeless=True)
 | |
|         mx.eval(cfun(x1))
 | |
|         self.assertTrue(mx.array_equal(fun(x2), cfun(x2)))
 | |
| 
 | |
|         def fun(x):
 | |
|             return x * x.sum(-1, keepdims=False)
 | |
| 
 | |
|         cfun = mx.compile(fun, shapeless=True)
 | |
|         self.assertTrue(mx.array_equal(fun(x2), cfun(x2)))
 | |
| 
 | |
|     def test_shapeless_compile_unflatten(self):
 | |
|         x = mx.zeros((1, 1, 4 * 32))
 | |
| 
 | |
|         def fun(x):
 | |
|             return mx.unflatten(x, -1, (4, -1))
 | |
| 
 | |
|         self.assertEqual(mx.compile(fun, shapeless=True)(x).shape, (1, 1, 4, 32))
 | |
| 
 | |
|     def test_shapeless_compile_gather(self):
 | |
|         x = mx.zeros((1, 1, 32))
 | |
| 
 | |
|         def fun(x):
 | |
|             return x[:, -1, :]
 | |
| 
 | |
|         self.assertEqual(mx.compile(fun, shapeless=True)(x).shape, (1, 32))
 | |
| 
 | |
|     def test_compile_with_constant(self):
 | |
|         # Test float
 | |
|         @partial(mx.compile)
 | |
|         def fun(x, y):
 | |
|             return x + y
 | |
| 
 | |
|         z = fun(mx.array(1.0), 1.0)
 | |
|         self.assertEqual(z.item(), 2.0)
 | |
| 
 | |
|         z = fun(mx.array(1.0), 2.0)
 | |
|         self.assertEqual(z.item(), 3.0)
 | |
| 
 | |
|         z = fun(mx.array(1.0), y=1.0)
 | |
|         self.assertEqual(z.item(), 2.0)
 | |
| 
 | |
|         z = fun(mx.array(1.0), y=3.0)
 | |
|         self.assertEqual(z.item(), 4.0)
 | |
| 
 | |
|         # Test tuple
 | |
|         @partial(mx.compile)
 | |
|         def fun(x, y=(1, 2)):
 | |
|             return x + y[0] + y[1]
 | |
| 
 | |
|         z = fun(mx.array(1))
 | |
|         self.assertEqual(z.item(), 4)
 | |
| 
 | |
|         z = fun(mx.array(1), (2, 2))
 | |
|         self.assertEqual(z.item(), 5)
 | |
| 
 | |
|         z = fun(mx.array(1), (2, 1))
 | |
|         self.assertEqual(z.item(), 4)
 | |
| 
 | |
|         # Test bool
 | |
|         @partial(mx.compile)
 | |
|         def fun(x, y):
 | |
|             if y:
 | |
|                 return x + 1
 | |
|             else:
 | |
|                 return x + 2
 | |
| 
 | |
|         z = fun(mx.array(1), True)
 | |
|         self.assertEqual(z.item(), 2)
 | |
| 
 | |
|         z = fun(mx.array(1), False)
 | |
|         self.assertEqual(z.item(), 3)
 | |
| 
 | |
|         # Test string
 | |
|         @partial(mx.compile)
 | |
|         def fun(x, y):
 | |
|             if y == "one":
 | |
|                 return x + 1
 | |
|             else:
 | |
|                 return x + 2
 | |
| 
 | |
|         z = fun(mx.array(1), "one")
 | |
|         self.assertEqual(z.item(), 2)
 | |
| 
 | |
|         z = fun(mx.array(1), "two")
 | |
|         self.assertEqual(z.item(), 3)
 | |
| 
 | |
|         # Test nested constant
 | |
|         @partial(mx.compile)
 | |
|         def fun(x, y):
 | |
|             if y[0][0] == 1:
 | |
|                 return x + 1
 | |
|             else:
 | |
|                 return x + 2
 | |
| 
 | |
|         z = fun(mx.array(1), [[1]])
 | |
|         self.assertEqual(z.item(), 2)
 | |
| 
 | |
|         z = fun(mx.array(1), [[0]])
 | |
|         self.assertEqual(z.item(), 3)
 | |
| 
 | |
|         @partial(mx.compile)
 | |
|         def fun(x, a, b):
 | |
|             for ai in a:
 | |
|                 for bi in b:
 | |
|                     x = bi * x + ai
 | |
|             return x
 | |
| 
 | |
|         z = fun(mx.array(1), [1, 1], [2])
 | |
|         self.assertEqual(z.item(), 7)
 | |
| 
 | |
|         z = fun(mx.array(1), [1], [1, 2])
 | |
|         self.assertEqual(z.item(), 5)
 | |
| 
 | |
|         counter = [0]
 | |
| 
 | |
|         @partial(mx.compile)
 | |
|         def fun(x, y):
 | |
|             counter[0] += 1
 | |
|             return x + y
 | |
| 
 | |
|         z = fun(mx.array(1), 1)
 | |
|         self.assertEqual(z.item(), 2)
 | |
| 
 | |
|         z = fun(1, mx.array(1))
 | |
|         self.assertEqual(z.item(), 2)
 | |
| 
 | |
|         self.assertEqual(counter[0], 2)
 | |
| 
 | |
|         y = 1.0
 | |
| 
 | |
|         @mx.compile
 | |
|         def fun(x, constant):
 | |
|             return x + y
 | |
| 
 | |
|         constant1 = "abc"
 | |
|         out = fun(mx.array(0.0), constant1)
 | |
|         self.assertEqual(out, mx.array(1.0))
 | |
| 
 | |
|         # new object, same value, no recompilation
 | |
|         y = 2.0
 | |
|         constant2 = "abc".encode("utf-8").decode("utf-8")
 | |
|         out = fun(mx.array(0.0), constant2)
 | |
|         self.assertEqual(out, mx.array(1.0))
 | |
| 
 | |
|         # same object, new value, recompilation
 | |
|         constant2 = "xyz"
 | |
|         out = fun(mx.array(0.0), constant2)
 | |
|         self.assertEqual(out, mx.array(2.0))
 | |
| 
 | |
|     def test_compile_inf(self):
 | |
|         @mx.compile
 | |
|         def fun(x):
 | |
|             return mx.isinf(x + 2)
 | |
| 
 | |
|         out = fun(mx.array([0.0]))
 | |
|         self.assertEqual(out.item(), False)
 | |
| 
 | |
|     def test_unsupported_input_types(self):
 | |
|         class MyClass:
 | |
|             value = 1
 | |
| 
 | |
|         @mx.compile
 | |
|         def fun(x, y):
 | |
|             return x + y.value
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             out = fun(mx.array(0.0), MyClass())
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             out = fun(mx.array(0.0), y=MyClass())
 | |
| 
 | |
|     def test_compile_create_list(self):
 | |
|         @mx.compile
 | |
|         def fun():
 | |
|             return [0.1 * mx.zeros((2,)), 0.1 * mx.zeros((2,))]
 | |
| 
 | |
|         out = fun()
 | |
|         mx.eval(out)
 | |
| 
 | |
|     def test_compile_vjp(self):
 | |
|         def fun(w):
 | |
|             w1 = w + w
 | |
|             w2 = w + w
 | |
|             return w @ w1 + w2 @ w2
 | |
| 
 | |
|         def step(w):
 | |
|             out, grad = mx.vjp(fun, (w,), (mx.array([[1.0, 1.0], [1.0, 1.0]]),))
 | |
|             return out[0], grad[0]
 | |
| 
 | |
|         w = mx.zeros((2, 2))
 | |
|         mx.eval(w)
 | |
| 
 | |
|         expected = step(w)
 | |
|         out = mx.compile(step)(w)
 | |
|         self.assertTrue(mx.allclose(expected[0], out[0]))
 | |
|         self.assertTrue(mx.allclose(expected[1], out[1]))
 | |
| 
 | |
|         def fun(w1, w2, x):
 | |
|             x = x @ w1
 | |
|             y = x @ w2
 | |
|             x = x + y * y
 | |
|             return (x * x).sum()
 | |
| 
 | |
|         w1 = mx.zeros((4, 4))
 | |
|         w2 = mx.zeros((4, 4))
 | |
|         x = mx.zeros((4, 4))
 | |
| 
 | |
|         def step(w1, w2, x):
 | |
|             loss, gradient = mx.value_and_grad(fun)(w1, w2, x)
 | |
|             w1 = w1 + gradient
 | |
|             return loss, w1
 | |
| 
 | |
|         mx.eval(x, w1, w2)
 | |
|         expected = step(w1, w2, x)
 | |
|         out = mx.compile(step)(w1, w2, x)
 | |
| 
 | |
|         self.assertTrue(mx.allclose(expected[0], out[0]))
 | |
|         self.assertTrue(mx.allclose(expected[1], out[1]))
 | |
| 
 | |
|     def test_shapeless_mean(self):
 | |
|         def mean(x):
 | |
|             return mx.mean(x, keepdims=True)
 | |
| 
 | |
|         cfun = mx.compile(mean)
 | |
|         out = cfun(mx.ones((5, 5)))
 | |
|         self.assertTrue(mx.allclose(out, mx.array(1.0)))
 | |
| 
 | |
|         cmean = mx.compile(mean, shapeless=True)
 | |
| 
 | |
|         x = mx.ones(2)
 | |
|         out = cmean(x)
 | |
|         self.assertTrue(mx.allclose(out, mean(x)))
 | |
| 
 | |
|         x = mx.ones(4)
 | |
|         out = cmean(x)
 | |
|         self.assertTrue(mx.allclose(out, mean(x)))
 | |
| 
 | |
|         x = mx.ones(7)
 | |
|         out = cmean(x)
 | |
|         self.assertTrue(mx.allclose(out, mean(x)))
 | |
| 
 | |
|     def test_compile_broadcast_only(self):
 | |
|         def fn(a):
 | |
|             a = mx.broadcast_to(a, (1,))
 | |
|             return a + a
 | |
| 
 | |
|         out = mx.compile(fn)(mx.array(2.0))
 | |
|         # Make sure repr can be called
 | |
|         self.assertTrue(repr(out) is not None)
 | |
|         self.assertTrue(mx.array_equal(out, mx.array([4.0])))
 | |
| 
 | |
|     def test_compile_with_long_name(self):
 | |
|         def fn(a, b):
 | |
|             for _ in range(10):
 | |
|                 a = a - 1.0
 | |
|                 b = b - 1.0
 | |
|             return a + b
 | |
| 
 | |
|         out = mx.compile(fn)(mx.array(10.0), mx.array(20.0))
 | |
|         self.assertEqual(out.item(), 10.0)
 | |
| 
 | |
|     def test_compile_multi_output(self):
 | |
|         def fn(x):
 | |
|             ys = [x]
 | |
|             for i in range(5):
 | |
|                 ys.append(ys[-1] + x)
 | |
|             return ys, mx.sum(ys[-1])
 | |
| 
 | |
|         x = mx.ones(1, dtype=mx.int32)
 | |
|         y1 = mx.compile(fn)(x)[1]
 | |
|         y2 = fn(x)[1]
 | |
|         self.assertEqual(y1.item(), y2.item())
 | |
|         self.assertEqual(y1.item(), 6)
 | |
| 
 | |
|     def test_inf_constant(self):
 | |
|         def fn(x):
 | |
|             return mx.where(mx.isinf(x), 0, 1)
 | |
| 
 | |
|         x = mx.array([0, float("inf"), 1], dtype=mx.bfloat16)
 | |
|         self.assertTrue(mx.array_equal(mx.compile(fn)(x), fn(x)))
 | |
| 
 | |
|     def test_max_into_equal(self):
 | |
|         x = mx.random.uniform(shape=(1, 2, 2))
 | |
|         mx.eval(x)
 | |
| 
 | |
|         def fn():
 | |
|             maxes = mx.max(x, axis=(1, 2), keepdims=True)
 | |
|             return x == maxes
 | |
| 
 | |
|         out = mx.compile(fn)()
 | |
|         expected = fn()
 | |
|         self.assertTrue(mx.array_equal(expected, out))
 | |
| 
 | |
|     def test_dtypes(self):
 | |
|         x = mx.array([0, 1, 2, 3])
 | |
|         dtypes = [mx.bool_, mx.int8, mx.uint8, mx.int16, mx.uint16]
 | |
|         for dtype in dtypes:
 | |
|             x = x.astype(dtype)
 | |
|             mx.eval(x)
 | |
| 
 | |
|             def fn(x):
 | |
|                 return x * 1 + 0
 | |
| 
 | |
|             out = mx.compile(fn)(x)
 | |
|             expected = fn(x)
 | |
|             self.assertTrue(mx.array_equal(expected, out))
 | |
| 
 | |
|     def test_compile_without_captured_inputs(self):
 | |
|         x = mx.array([1, 2, 3]) + 2
 | |
| 
 | |
|         def fn(a):
 | |
|             y = x + 1
 | |
|             return a + y
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             y = mx.compile(fn)(x)
 | |
| 
 | |
|         x = mx.array([1.0, 2.0]) + mx.array([1.0, 2.0])
 | |
|         y = None
 | |
| 
 | |
|         def fn(x):
 | |
|             nonlocal y
 | |
|             if y is None:
 | |
|                 y = mx.array([1.0, 2.0])
 | |
| 
 | |
|             y = y + x
 | |
|             return y
 | |
| 
 | |
|         fn(x)
 | |
|         with self.assertRaises(ValueError):
 | |
|             y = mx.compile(fn)(x)
 | |
| 
 | |
|     def test_compile_dynamic_dims(self):
 | |
|         a = mx.random.uniform(shape=(2,) * 10)
 | |
|         b = mx.random.uniform(shape=(2,) * 10)
 | |
|         a = a.T
 | |
|         mx.eval(a, b)
 | |
| 
 | |
|         def fn(a, b):
 | |
|             return mx.abs(a + b)
 | |
| 
 | |
|         out = mx.compile(fn)(a, b)
 | |
|         expected = fn(a, b)
 | |
|         self.assertTrue(mx.allclose(out, expected))
 | |
| 
 | |
|     def test_compile_many_inputs(self):
 | |
|         inputs = [mx.ones((2, 2, 2, 2)) for _ in range(20)]
 | |
|         inputs[0] = inputs[0].T
 | |
| 
 | |
|         @mx.compile
 | |
|         def fun(*inputs):
 | |
|             x = inputs[0]
 | |
|             for y in inputs[1:10]:
 | |
|                 x = x + y
 | |
|             a = inputs[10]
 | |
|             for b in inputs[11:]:
 | |
|                 a = a + b
 | |
|             return x + a
 | |
| 
 | |
|         out = fun(*inputs)
 | |
|         self.assertTrue(mx.allclose(out, mx.full((2, 2), 20)))
 | |
| 
 | |
|         @mx.compile
 | |
|         def fun(arrs):
 | |
|             for _ in range(6):
 | |
|                 arrs = [x + y for x, y in zip(arrs[::2], arrs[1::2])]
 | |
|             return arrs[0]
 | |
| 
 | |
|         arrs = [mx.array([1.0, 2.0]) for _ in range(64)]
 | |
|         out = fun(arrs)
 | |
|         self.assertTrue(mx.allclose(out, mx.array([64.0, 128.0])))
 | |
| 
 | |
|     def test_compile_many_outputs(self):
 | |
| 
 | |
|         @mx.compile
 | |
|         def fun(arr):
 | |
|             arrs = [arr] * 64
 | |
|             first_arrs = None
 | |
|             for _ in range(6):
 | |
|                 arrs = [x + y for x, y in zip(arrs[::2], arrs[1::2])]
 | |
|                 if first_arrs is None:
 | |
|                     first_arrs = arrs
 | |
|             return arrs[0], first_arrs
 | |
| 
 | |
|         out = fun(mx.array([1.0, 2.0]))
 | |
|         self.assertTrue(mx.allclose(out[0], mx.array([64.0, 128.0])))
 | |
| 
 | |
|     def test_shapeless_compile_matmul(self):
 | |
|         a = mx.array([0.0, 1.0, 2.0])
 | |
|         b = mx.array([0.0, 1.0, 2.0])
 | |
| 
 | |
|         fun = mx.compile(lambda a, b: a @ b, shapeless=True)
 | |
|         self.assertTrue(mx.allclose(fun(a, b), a @ b))
 | |
| 
 | |
|     def test_shapeless_compile_slice_update(self):
 | |
|         def fun(x):
 | |
|             x[2] = mx.array([3.0])
 | |
|             return x
 | |
| 
 | |
|         cfun = mx.compile(fun, shapeless=True)
 | |
| 
 | |
|         a = mx.array([0.0, 1.0, 2.0, 3.0])
 | |
|         self.assertTrue(mx.allclose(cfun(a), fun(a)))
 | |
| 
 | |
|         a = mx.array([0.0, 1.0, 2.0, 3.0, 4.0])
 | |
|         self.assertTrue(mx.allclose(cfun(a), fun(a)))
 | |
| 
 | |
|     def test_shapeless_compile_with_reshape(self):
 | |
|         def fun(x):
 | |
|             return x.reshape(x.shape[0] * x.shape[1], -1)
 | |
| 
 | |
|         compiled_fun = mx.compile(fun, shapeless=True)
 | |
| 
 | |
|         x = mx.zeros(shape=(2, 3, 4))
 | |
|         out = compiled_fun(x)
 | |
|         self.assertEqual(out.shape, (6, 4))
 | |
| 
 | |
|         x = mx.zeros(shape=(2, 3, 8))
 | |
|         out = compiled_fun(x)
 | |
|         self.assertEqual(out.shape, (6, 8))
 | |
| 
 | |
|         x = mx.zeros(shape=(5, 5, 5))
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             compiled_fun(x)
 | |
| 
 | |
|     def test_compile_shapeless_with_broadcast(self):
 | |
|         a = mx.array(0.0)
 | |
|         b = mx.ones((2, 2))
 | |
| 
 | |
|         def fun(a):
 | |
|             return mx.broadcast_to(a, b.shape)
 | |
| 
 | |
|         cfun = mx.compile(fun, shapeless=True)
 | |
|         # Works on the first shape
 | |
|         cfun(a)
 | |
| 
 | |
|         # Fails on a different shape
 | |
|         with self.assertRaises(ValueError):
 | |
|             cfun(mx.array(0.0).reshape(1, 1, 1))
 | |
| 
 | |
|         def fun(a, b):
 | |
|             return mx.broadcast_arrays(a, b)
 | |
| 
 | |
|         cfun = mx.compile(fun, shapeless=True)
 | |
|         a, b = cfun(a, b)
 | |
|         self.assertEqual(a.shape, (2, 2))
 | |
|         self.assertEqual(b.shape, (2, 2))
 | |
| 
 | |
|         # Batched matmul
 | |
|         a = mx.zeros((2, 1, 4, 2))
 | |
|         b = mx.zeros((3, 2, 5))
 | |
| 
 | |
|         def fun(a, b):
 | |
|             return a @ b
 | |
| 
 | |
|         cfun = mx.compile(fun, shapeless=True)
 | |
|         out = cfun(a, b)
 | |
|         self.assertEqual(out.shape, (2, 3, 4, 5))
 | |
| 
 | |
|         # Shapeless compile should be preserved over vjp, jvp, vmap
 | |
|         def fun(args):
 | |
|             return sum(args).sum()
 | |
| 
 | |
|         a = mx.array(0.0)
 | |
|         b = mx.ones((2, 2))
 | |
| 
 | |
|         cfun = mx.compile(mx.grad(fun), shapeless=True)
 | |
|         out = cfun((a, b))
 | |
| 
 | |
|         self.assertEqual(out[0].shape, ())
 | |
|         self.assertEqual(out[1].shape, (2, 2))
 | |
| 
 | |
|         out = cfun((b, a))
 | |
| 
 | |
|         self.assertEqual(out[0].shape, (2, 2))
 | |
|         self.assertEqual(out[1].shape, ())
 | |
| 
 | |
|         # Shapeless compile should be preserved over vjp, jvp, vmap
 | |
|         def fun(args):
 | |
|             return (args[0] @ args[1]).sum()
 | |
| 
 | |
|         a = mx.zeros((2, 1, 4, 2))
 | |
|         b = mx.zeros((3, 2, 5))
 | |
| 
 | |
|         cfun = mx.compile(mx.grad(fun), shapeless=True)
 | |
|         out = cfun((a, b))
 | |
| 
 | |
|         self.assertEqual(out[0].shape, (2, 1, 4, 2))
 | |
|         self.assertEqual(out[1].shape, (3, 2, 5))
 | |
| 
 | |
|         a = mx.zeros((3, 1, 4, 2))
 | |
|         b = mx.zeros((2, 2, 5))
 | |
| 
 | |
|         out = cfun((a, b))
 | |
| 
 | |
|         self.assertEqual(out[0].shape, (3, 1, 4, 2))
 | |
|         self.assertEqual(out[1].shape, (2, 2, 5))
 | |
| 
 | |
|     def test_leaks(self):
 | |
|         gc.collect()
 | |
|         if mx.metal.is_available():
 | |
|             mem_pre = mx.get_active_memory()
 | |
|         else:
 | |
|             mem_pre = 0
 | |
| 
 | |
|         def outer():
 | |
|             d = {}
 | |
| 
 | |
|             def f(x):
 | |
|                 return d["x"]
 | |
| 
 | |
|             d["f"] = mx.compile(f)
 | |
|             d["x"] = mx.array([0] * 1000)
 | |
| 
 | |
|         for _ in range(5):
 | |
|             outer()
 | |
|             gc.collect()
 | |
| 
 | |
|         if mx.metal.is_available():
 | |
|             mem_post = mx.get_active_memory()
 | |
|         else:
 | |
|             mem_post = 0
 | |
| 
 | |
|         self.assertEqual(mem_pre, mem_post)
 | |
| 
 | |
|     def test_double_constant(self):
 | |
|         with mx.stream(mx.cpu):
 | |
|             x = mx.array(1.0, dtype=mx.float64)
 | |
| 
 | |
|             def fun(x):
 | |
|                 return (x + math.pi) * 2.0
 | |
| 
 | |
|             y = fun(x).item()
 | |
|             y_compiled = mx.compile(fun)(x).item()
 | |
|             self.assertEqual(y, y_compiled)
 | |
| 
 | |
|     def test_shared_broadcast(self):
 | |
|         def fun(x, y, z):
 | |
|             yy = mx.broadcast_to(y, z.shape)
 | |
|             return (x + yy * z), yy.sum()
 | |
| 
 | |
|         a = mx.random.normal((10, 10))
 | |
|         b = mx.array(0.1)
 | |
|         c = mx.random.normal((10, 10))
 | |
|         mx.eval(a, b, c)
 | |
|         fc = mx.compile(fun)
 | |
|         d = fc(a, b, c)
 | |
| 
 | |
|         s = StringIO()
 | |
|         mx.export_to_dot(s, a=a, b=b, c=c, d1=d[0], d2=d[1])
 | |
|         s.seek(0)
 | |
|         s = s.read()
 | |
| 
 | |
|         self.assertTrue("CompiledBroadcastMultiplyAdd" in s)
 | |
|         d_hat = fun(a, b, c)
 | |
|         self.assertTrue(mx.allclose(d[0], d_hat[0]))
 | |
|         self.assertTrue(mx.allclose(d[1], d_hat[1]))
 | |
| 
 | |
|     def test_wrap_compiled(self):
 | |
|         @mx.compile
 | |
|         def inner():
 | |
|             pass
 | |
| 
 | |
|         @wraps(inner)
 | |
|         def wrapper():
 | |
|             pass
 | |
| 
 | |
|     def test_compiled_preserves_attributes(self):
 | |
|         def inner(x: mx.array, y: str):
 | |
|             """
 | |
|             A useful function.
 | |
|             """
 | |
|             pass
 | |
| 
 | |
|         c_inner = mx.compile(inner)
 | |
|         self.assertEqual(inner.__name__, c_inner.__name__)
 | |
|         self.assertEqual(inner.__qualname__, c_inner.__qualname__)
 | |
|         self.assertEqual(inner.__doc__, c_inner.__doc__)
 | |
|         self.assertEqual(inspect.signature(inner), inspect.signature(c_inner))
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     mlx_tests.MLXTestRunner()
 | 
