mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			364 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2024 Apple Inc.
 | |
| 
 | |
| import unittest
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx_tests
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| class TestEinsum(mlx_tests.MLXTestCase):
 | |
| 
 | |
|     def test_simple_path(self):
 | |
|         a = mx.zeros((5, 5))
 | |
|         path = mx.einsum_path("ii", a)
 | |
|         self.assertEqual(path[0], [(0,)])
 | |
| 
 | |
|         path = mx.einsum_path("ij->i", a)
 | |
|         self.assertEqual(path[0], [(0,)])
 | |
| 
 | |
|         path = mx.einsum_path("ii->i", a)
 | |
|         self.assertEqual(path[0], [(0,)])
 | |
| 
 | |
|         a = mx.zeros((5, 8))
 | |
|         b = mx.zeros((8, 3))
 | |
|         path = mx.einsum_path("ij,jk", a, b)
 | |
|         self.assertEqual(path[0], [(0, 1)])
 | |
|         path = mx.einsum_path("ij,jk -> ijk", a, b)
 | |
|         self.assertEqual(path[0], [(0, 1)])
 | |
| 
 | |
|         a = mx.zeros((5, 8))
 | |
|         b = mx.zeros((8, 3))
 | |
|         c = mx.zeros((3, 7))
 | |
|         path = mx.einsum_path("ij,jk,kl", a, b, c)
 | |
| 
 | |
|         self.assertEqual(path[0], [(0, 1), (0, 1)])
 | |
| 
 | |
|         a = mx.zeros((5, 8))
 | |
|         b = mx.zeros((8, 10))
 | |
|         c = mx.zeros((10, 7))
 | |
|         path = mx.einsum_path("ij,jk,kl", a, b, c)
 | |
|         self.assertEqual(path[0], [(1, 2), (0, 1)])
 | |
| 
 | |
|     def test_longer_paths(self):
 | |
|         chars = "abcdefghijklmopqABC"
 | |
|         sizes = [2, 3, 4, 5, 4, 3, 2, 6, 5, 4, 3, 2, 5, 7, 4, 3, 2, 3, 4]
 | |
|         dim_dict = {c: s for c, s in zip(chars, sizes)}
 | |
|         cases = [
 | |
|             "eb,cb,fb->cef",
 | |
|             "dd,fb,be,cdb->cef",
 | |
|             "dd,fb,be,cdb->cef",
 | |
|             "bca,cdb,dbf,afc->",
 | |
|             "dcc,fce,ea,dbf->ab",
 | |
|             "dcc,fce,ea,dbf->ab",
 | |
|         ]
 | |
| 
 | |
|         for case in cases:
 | |
|             subscripts = case[: case.find("->")].split(",")
 | |
|             inputs = []
 | |
|             for s in subscripts:
 | |
|                 shape = [dim_dict[c] for c in s]
 | |
|                 inputs.append(np.ones(shape))
 | |
|             np_path = np.einsum_path(case, *inputs)
 | |
| 
 | |
|             inputs = [mx.array(i) for i in inputs]
 | |
|             mx_path = mx.einsum_path(case, *inputs)
 | |
|             self.assertEqual(np_path[0][1:], mx_path[0])
 | |
| 
 | |
|     def test_simple_einsum(self):
 | |
|         a = mx.arange(4 * 4).reshape(4, 4)
 | |
|         a_mx = mx.einsum("ii->i", a)
 | |
|         a_np = np.einsum("ii->i", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.arange(2 * 2 * 2).reshape(2, 2, 2)
 | |
|         a_mx = mx.einsum("iii->i", a)
 | |
|         a_np = np.einsum("iii->i", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.arange(2 * 2 * 3 * 3).reshape(2, 2, 3, 3)
 | |
|         a_mx = mx.einsum("iijj->ij", a)
 | |
|         a_np = np.einsum("iijj->ij", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.arange(2 * 2 * 3 * 3).reshape(2, 3, 2, 3)
 | |
|         a_mx = mx.einsum("ijij->ij", a)
 | |
|         a_np = np.einsum("ijij->ij", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         # Test some simple reductions
 | |
|         a = mx.arange(2 * 2).reshape(2, 2)
 | |
|         a_mx = mx.einsum("ii", a)
 | |
|         a_np = np.einsum("ii", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.arange(2 * 4).reshape(2, 4)
 | |
|         a_mx = mx.einsum("ij->", a)
 | |
|         a_np = np.einsum("ij->", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.arange(2 * 4).reshape(2, 4)
 | |
|         a_mx = mx.einsum("ij->i", a)
 | |
|         a_np = np.einsum("ij->i", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.arange(2 * 4).reshape(2, 4)
 | |
|         a_mx = mx.einsum("ij->j", a)
 | |
|         a_np = np.einsum("ij->j", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.arange(2 * 2 * 2).reshape(2, 2, 2)
 | |
|         a_mx = mx.einsum("iii->", a)
 | |
|         a_np = np.einsum("iii->", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.arange(2 * 2 * 3 * 3).reshape(2, 3, 2, 3)
 | |
|         a_mx = mx.einsum("ijij->j", a)
 | |
|         a_np = np.einsum("ijij->j", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         # Test some simple transposes
 | |
|         a = mx.arange(2 * 4).reshape(2, 4)
 | |
|         a_mx = mx.einsum("ij", a)
 | |
|         a_np = np.einsum("ij", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.arange(2 * 4).reshape(2, 4)
 | |
|         a_mx = mx.einsum("ij->ji", a)
 | |
|         a_np = np.einsum("ij->ji", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.arange(2 * 3 * 4).reshape(2, 3, 4)
 | |
|         a_mx = mx.einsum("ijk->jki", a)
 | |
|         a_np = np.einsum("ijk->jki", a)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|     def test_two_input_einsum(self):
 | |
| 
 | |
|         # Matmul
 | |
|         a = mx.full((2, 8), 1.0)
 | |
|         b = mx.full((8, 2), 1.0)
 | |
|         a_mx = mx.einsum("ik,kj", a, b)
 | |
|         a_np = np.einsum("ik,kj", a, b)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         # Matmul + transpose
 | |
|         a = mx.full((2, 8), 1.0)
 | |
|         b = mx.full((8, 3), 1.0)
 | |
|         a_mx = mx.einsum("ik,kj->ji", a, b)
 | |
|         a_np = np.einsum("ik,kj->ji", a, b)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         # Inner product
 | |
|         a = mx.full((4,), 1.0)
 | |
|         b = mx.full((4,), 1.0)
 | |
|         a_mx = mx.einsum("i,i", a, b)
 | |
|         a_np = np.einsum("i,i", a, b)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         # Outer product
 | |
|         a = mx.full((4,), 0.5)
 | |
|         b = mx.full((6,), 2.0)
 | |
|         a_mx = mx.einsum("i,j->ij", a, b)
 | |
|         a_np = np.einsum("i,j->ij", a, b)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         # Elementwise multiply
 | |
|         a = mx.full((2, 8), 1.0)
 | |
|         b = mx.full((2, 8), 1.0)
 | |
|         a_mx = mx.einsum("ij,ij->ij", a, b)
 | |
|         a_np = np.einsum("ij,ij->ij", a, b)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         # Medley
 | |
|         a = mx.full((2, 8, 3, 5), 1.0)
 | |
|         b = mx.full((3, 7, 5, 2), 1.0)
 | |
|         a_mx = mx.einsum("abcd,fgda->bfca", a, b)
 | |
|         a_np = np.einsum("abcd,fgda->bfca", a, b)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|     def test_sum_first(self):
 | |
|         a = mx.full((5, 8), 1.0)
 | |
|         b = mx.full((8, 2), 1.0)
 | |
|         a_mx = mx.einsum("ab,bc->c", a, b)
 | |
|         a_np = np.einsum("ab,bc->c", a, b)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|     def test_broadcasting(self):
 | |
|         a = mx.full((5, 1), 1.0)
 | |
|         b = mx.full((8, 2), 1.0)
 | |
|         a_mx = mx.einsum("ab,bc->c", a, b)
 | |
|         return
 | |
|         a_np = np.einsum("ab,bc->c", a, b)
 | |
|         self.assertTrue(np.array_equal(a_mx, a_np))
 | |
| 
 | |
|         a = mx.random.uniform(shape=(5, 1, 3, 1))
 | |
|         b = mx.random.uniform(shape=(1, 7, 1, 2))
 | |
|         a_mx = mx.einsum("abcd,cdab->abcd", a, b)
 | |
|         a_np = np.einsum("abcd,cdab->abcd", a, b)
 | |
|         self.assertTrue(np.allclose(a_mx, a_np))
 | |
| 
 | |
|     def test_attention(self):
 | |
|         q = mx.random.uniform(shape=(2, 3, 4, 5))
 | |
|         k = mx.random.uniform(shape=(2, 3, 4, 5))
 | |
|         v = mx.random.uniform(shape=(2, 3, 4, 5))
 | |
| 
 | |
|         s = mx.einsum("itjk,iujk->ijtu", q, k)
 | |
|         out_mx = mx.einsum("ijtu,iujk->itjk", s, v)
 | |
| 
 | |
|         s = np.einsum("itjk,iujk->ijtu", q, k)
 | |
|         out_np = np.einsum("ijtu,iujk->itjk", s, v)
 | |
| 
 | |
|         self.assertTrue(np.allclose(out_mx, out_np))
 | |
| 
 | |
|     def test_multi_input_einsum(self):
 | |
|         a = mx.ones((3, 4, 5))
 | |
|         out_mx = mx.einsum("ijk,lmk,ijf->lf", a, a, a)
 | |
|         out_np = np.einsum("ijk,lmk,ijf->lf", a, a, a)
 | |
|         self.assertTrue(np.allclose(out_mx, out_np))
 | |
| 
 | |
|     def test_opt_einsum_test_cases(self):
 | |
|         # Test cases from
 | |
|         # https://github.com/dgasmith/opt_einsum/blob/c826bb7df16f470a69f7bf90598fc27586209d11/opt_einsum/tests/test_contract.py#L11
 | |
|         tests = [
 | |
|             # Test hadamard-like products
 | |
|             "a,ab,abc->abc",
 | |
|             "a,b,ab->ab",
 | |
|             # Test index-transformations
 | |
|             "ea,fb,gc,hd,abcd->efgh",
 | |
|             "ea,fb,abcd,gc,hd->efgh",
 | |
|             "abcd,ea,fb,gc,hd->efgh",
 | |
|             # Test complex contractions
 | |
|             "acdf,jbje,gihb,hfac,gfac,gifabc,hfac",
 | |
|             "cd,bdhe,aidb,hgca,gc,hgibcd,hgac",
 | |
|             "abhe,hidj,jgba,hiab,gab",
 | |
|             "bde,cdh,agdb,hica,ibd,hgicd,hiac",
 | |
|             "chd,bde,agbc,hiad,hgc,hgi,hiad",
 | |
|             "chd,bde,agbc,hiad,bdi,cgh,agdb",
 | |
|             "bdhe,acad,hiab,agac,hibd",
 | |
|             # Test collapse
 | |
|             "ab,ab,c->",
 | |
|             "ab,ab,c->c",
 | |
|             "ab,ab,cd,cd->",
 | |
|             "ab,ab,cd,cd->ac",
 | |
|             "ab,ab,cd,cd->cd",
 | |
|             "ab,ab,cd,cd,ef,ef->",
 | |
|             # Test outer prodcuts
 | |
|             "ab,cd,ef->abcdef",
 | |
|             "ab,cd,ef->acdf",
 | |
|             "ab,cd,de->abcde",
 | |
|             "ab,cd,de->be",
 | |
|             "ab,bcd,cd->abcd",
 | |
|             "ab,bcd,cd->abd",
 | |
|             # Random test cases that have previously failed
 | |
|             "eb,cb,fb->cef",
 | |
|             "dd,fb,be,cdb->cef",
 | |
|             "bca,cdb,dbf,afc->",
 | |
|             "dcc,fce,ea,dbf->ab",
 | |
|             "fdf,cdd,ccd,afe->ae",
 | |
|             "abcd,ad",
 | |
|             "ed,fcd,ff,bcf->be",
 | |
|             "baa,dcf,af,cde->be",
 | |
|             "bd,db,eac->ace",
 | |
|             "fff,fae,bef,def->abd",
 | |
|             "efc,dbc,acf,fd->abe",
 | |
|             # Inner products
 | |
|             "ab,ab",
 | |
|             "ab,ba",
 | |
|             "abc,abc",
 | |
|             "abc,bac",
 | |
|             "abc,cba",
 | |
|             # GEMM test cases
 | |
|             "ab,bc",
 | |
|             "ab,cb",
 | |
|             "ba,bc",
 | |
|             "ba,cb",
 | |
|             "abcd,cd",
 | |
|             "abcd,ab",
 | |
|             "abcd,cdef",
 | |
|             "abcd,cdef->feba",
 | |
|             "abcd,efdc",
 | |
|             # Inner then dot
 | |
|             "aab,bc->ac",
 | |
|             "ab,bcc->ac",
 | |
|             "aab,bcc->ac",
 | |
|             "baa,bcc->ac",
 | |
|             "aab,ccb->ac",
 | |
|             # Randomly build test caes
 | |
|             "aab,fa,df,ecc->bde",
 | |
|             "ecb,fef,bad,ed->ac",
 | |
|             "bcf,bbb,fbf,fc->",
 | |
|             "bb,ff,be->e",
 | |
|             "bcb,bb,fc,fff->",
 | |
|             "fbb,dfd,fc,fc->",
 | |
|             "afd,ba,cc,dc->bf",
 | |
|             "adb,bc,fa,cfc->d",
 | |
|             "bbd,bda,fc,db->acf",
 | |
|             "dba,ead,cad->bce",
 | |
|             "aef,fbc,dca->bde",
 | |
|         ]
 | |
| 
 | |
|         size_dict = dict(zip("abcdefghij", [2, 3, 4, 5, 2, 3, 4, 5, 2, 3]))
 | |
| 
 | |
|         def inputs_for_case(test_case):
 | |
|             inputs = test_case.split("->")[0].split(",")
 | |
|             return [
 | |
|                 mx.random.uniform(shape=tuple(size_dict[c] for c in inp))
 | |
|                 for inp in inputs
 | |
|             ]
 | |
| 
 | |
|         for test_case in tests:
 | |
|             inputs = inputs_for_case(test_case)
 | |
|             np_out = np.einsum(test_case, *inputs)
 | |
|             mx_out = mx.einsum(test_case, *inputs)
 | |
|             self.assertTrue(np.allclose(mx_out, np_out, rtol=1e-4, atol=1e-4))
 | |
| 
 | |
|     def test_ellipses(self):
 | |
|         size_dict = dict(zip("abcdefghij", [2, 3, 4, 5, 2, 3, 4, 5, 2, 3]))
 | |
| 
 | |
|         def inputs_for_case(test_case):
 | |
|             inputs = test_case.split("->")[0].split(",")
 | |
|             return [
 | |
|                 mx.random.uniform(shape=tuple(size_dict[c] for c in inp))
 | |
|                 for inp in inputs
 | |
|             ]
 | |
| 
 | |
|         tests = [
 | |
|             ("abc->ab", "...c->..."),
 | |
|             ("abcd->ad", "a...d->..."),
 | |
|             ("abij,abgj->abig", "...ij,...gj->...ig"),
 | |
|             ("abij,abgj->abig", "...ij,...gj->..."),
 | |
|             ("abhh->abh", "...hh->...h"),
 | |
|             ("abhh->abh", "...hh->...h"),
 | |
|             ("bch,abcj->abchj", "...h,...j->...hj"),
 | |
|             ("bc,cd->bd", "...c,cd"),
 | |
|             ("abc,acd->bd", "...bc,...cd"),
 | |
|             ("abcd,c->abd", "...cd,c"),
 | |
|             ("abcd,c->abd", "...cd,c..."),
 | |
|             ("abcd,c->abd", "...cd,c...->d..."),
 | |
|             ("abc,b->abc", "ab...,b...->ab..."),
 | |
|             ("abc,b->abc", "ab...,...b->ab..."),
 | |
|             ("abc,b->abc", "ab...,b->ab..."),
 | |
|             ("ab,bc->ac", "ab...,b...->a..."),
 | |
|             ("ab,bc->ac", "ab...,...bc->a...c"),
 | |
|             ("ab,bc->ac", "ab,b...->a..."),
 | |
|             ("abcdef,defg->abcg", "...def,defg->...g"),
 | |
|         ]
 | |
|         for test_case in tests:
 | |
|             inputs = inputs_for_case(test_case[0])
 | |
|             np_out = np.einsum(test_case[1], *inputs)
 | |
|             mx_out = mx.einsum(test_case[1], *inputs)
 | |
|             self.assertTrue(np.allclose(mx_out, np_out, rtol=1e-4, atol=1e-4))
 | |
| 
 | |
|         error_tests = [
 | |
|             ("abc,abc->ab", "a...b...c,a...b...c->abc"),
 | |
|         ]
 | |
|         for test_case in error_tests:
 | |
|             inputs = inputs_for_case(test_case[0])
 | |
|             with self.assertRaises(ValueError):
 | |
|                 mx.einsum(test_case[1], *inputs)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     mlx_tests.MLXTestRunner()
 | 
