mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			324 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			324 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023 Apple Inc.
 | |
| 
 | |
| import itertools
 | |
| import unittest
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx_tests
 | |
| import numpy as np
 | |
| 
 | |
| try:
 | |
|     import torch
 | |
| 
 | |
|     has_torch = True
 | |
| except ImportError as e:
 | |
|     has_torch = False
 | |
| 
 | |
| 
 | |
| class TestFFT(mlx_tests.MLXTestCase):
 | |
|     def check_mx_np(self, op_mx, op_np, a_np, atol=1e-5, rtol=1e-6, **kwargs):
 | |
|         out_np = op_np(a_np, **kwargs)
 | |
|         a_mx = mx.array(a_np)
 | |
|         out_mx = op_mx(a_mx, **kwargs)
 | |
|         np.testing.assert_allclose(out_np, out_mx, atol=atol, rtol=rtol)
 | |
| 
 | |
|     def test_fft(self):
 | |
|         r = np.random.rand(100).astype(np.float32)
 | |
|         i = np.random.rand(100).astype(np.float32)
 | |
|         a_np = r + 1j * i
 | |
|         self.check_mx_np(mx.fft.fft, np.fft.fft, a_np)
 | |
| 
 | |
|         # Check with slicing and padding
 | |
|         r = np.random.rand(100).astype(np.float32)
 | |
|         i = np.random.rand(100).astype(np.float32)
 | |
|         a_np = r + 1j * i
 | |
|         self.check_mx_np(mx.fft.fft, np.fft.fft, a_np, n=80)
 | |
|         self.check_mx_np(mx.fft.fft, np.fft.fft, a_np, n=120)
 | |
| 
 | |
|         # Check different axes
 | |
|         r = np.random.rand(100, 100).astype(np.float32)
 | |
|         i = np.random.rand(100, 100).astype(np.float32)
 | |
|         a_np = r + 1j * i
 | |
|         self.check_mx_np(mx.fft.fft, np.fft.fft, a_np, axis=0)
 | |
|         self.check_mx_np(mx.fft.fft, np.fft.fft, a_np, axis=1)
 | |
| 
 | |
|         # Check real fft
 | |
|         a_np = np.random.rand(100).astype(np.float32)
 | |
|         self.check_mx_np(mx.fft.rfft, np.fft.rfft, a_np)
 | |
|         self.check_mx_np(mx.fft.rfft, np.fft.rfft, a_np, n=80)
 | |
|         self.check_mx_np(mx.fft.rfft, np.fft.rfft, a_np, n=120)
 | |
| 
 | |
|         # Check real inverse
 | |
|         r = np.random.rand(100, 100).astype(np.float32)
 | |
|         i = np.random.rand(100, 100).astype(np.float32)
 | |
|         a_np = r + 1j * i
 | |
|         self.check_mx_np(mx.fft.ifft, np.fft.ifft, a_np)
 | |
|         self.check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, n=80)
 | |
|         self.check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, n=120)
 | |
| 
 | |
|         x = np.fft.rfft(np.real(a_np))
 | |
|         self.check_mx_np(mx.fft.irfft, np.fft.irfft, x)
 | |
| 
 | |
|     def test_fftn(self):
 | |
|         r = np.random.randn(8, 8, 8).astype(np.float32)
 | |
|         i = np.random.randn(8, 8, 8).astype(np.float32)
 | |
|         a = r + 1j * i
 | |
| 
 | |
|         axes = [None, (1, 2), (2, 1), (0, 2)]
 | |
|         shapes = [None, (10, 5), (5, 10)]
 | |
|         ops = [
 | |
|             "fft2",
 | |
|             "ifft2",
 | |
|             "rfft2",
 | |
|             "irfft2",
 | |
|             "fftn",
 | |
|             "ifftn",
 | |
|             "rfftn",
 | |
|             "irfftn",
 | |
|         ]
 | |
| 
 | |
|         for op, ax, s in itertools.product(ops, axes, shapes):
 | |
|             if ax is None and s is not None:
 | |
|                 continue
 | |
|             x = a
 | |
|             if op in ["rfft2", "rfftn"]:
 | |
|                 x = r
 | |
|             elif op == "irfft2":
 | |
|                 x = np.ascontiguousarray(np.fft.rfft2(r, axes=ax, s=s))
 | |
|             elif op == "irfftn":
 | |
|                 x = np.ascontiguousarray(np.fft.rfftn(r, axes=ax, s=s))
 | |
|             mx_op = getattr(mx.fft, op)
 | |
|             np_op = getattr(np.fft, op)
 | |
|             self.check_mx_np(mx_op, np_op, x, axes=ax, s=s)
 | |
| 
 | |
|     def _run_ffts(self, shape, atol=1e-4, rtol=1e-4):
 | |
|         np.random.seed(9)
 | |
| 
 | |
|         r = np.random.rand(*shape).astype(np.float32)
 | |
|         i = np.random.rand(*shape).astype(np.float32)
 | |
|         a_np = r + 1j * i
 | |
|         self.check_mx_np(mx.fft.fft, np.fft.fft, a_np, atol=atol, rtol=rtol)
 | |
|         self.check_mx_np(mx.fft.ifft, np.fft.ifft, a_np, atol=atol, rtol=rtol)
 | |
| 
 | |
|         self.check_mx_np(mx.fft.rfft, np.fft.rfft, r, atol=atol, rtol=rtol)
 | |
| 
 | |
|         ia_np = np.fft.rfft(r)
 | |
|         self.check_mx_np(
 | |
|             mx.fft.irfft, np.fft.irfft, ia_np, atol=atol, rtol=rtol, n=shape[-1]
 | |
|         )
 | |
|         self.check_mx_np(mx.fft.irfft, np.fft.irfft, ia_np, atol=atol, rtol=rtol)
 | |
| 
 | |
|     def test_fft_shared_mem(self):
 | |
|         nums = np.concatenate(
 | |
|             [
 | |
|                 # small radix
 | |
|                 np.arange(2, 14),
 | |
|                 # powers of 2
 | |
|                 [2**k for k in range(4, 13)],
 | |
|                 # stockham
 | |
|                 [3 * 3 * 3, 3 * 11, 11 * 13 * 2, 7 * 4 * 13 * 11, 13 * 13 * 11],
 | |
|                 # rader
 | |
|                 [17, 23, 29, 17 * 8 * 3, 23 * 2, 1153, 1982],
 | |
|                 # bluestein
 | |
|                 [47, 83, 17 * 17],
 | |
|                 # large stockham
 | |
|                 [3159, 3645, 3969, 4004],
 | |
|             ]
 | |
|         )
 | |
|         for batch_size in (1, 3, 32):
 | |
|             for num in nums:
 | |
|                 atol = 1e-4 if num < 1025 else 1e-3
 | |
|                 self._run_ffts((batch_size, num), atol=atol)
 | |
| 
 | |
|     @unittest.skip("Too slow for CI but useful for local testing.")
 | |
|     def test_fft_exhaustive(self):
 | |
|         nums = range(2, 4097)
 | |
|         for batch_size in (1, 3, 32):
 | |
|             for num in nums:
 | |
|                 print(num)
 | |
|                 atol = 1e-4 if num < 1025 else 1e-3
 | |
|                 self._run_ffts((batch_size, num), atol=atol)
 | |
| 
 | |
|     def test_fft_big_powers_of_two(self):
 | |
|         # TODO: improve precision on big powers of two on GPU
 | |
|         for k in range(12, 17):
 | |
|             self._run_ffts((3, 2**k), atol=1e-3)
 | |
| 
 | |
|         for k in range(17, 20):
 | |
|             self._run_ffts((3, 2**k), atol=1e-2)
 | |
| 
 | |
|     def test_fft_large_numbers(self):
 | |
|         numbers = [
 | |
|             1037,  # prime > 2048
 | |
|             18247,  # medium size prime factors
 | |
|             1259 * 11,  # large prime factors
 | |
|             7883,  # large prime
 | |
|             3**8,  # large stockham decomposable
 | |
|             3109,  # bluestein
 | |
|             4006,  # large rader
 | |
|         ]
 | |
|         for large_num in numbers:
 | |
|             self._run_ffts((1, large_num), atol=1e-3)
 | |
| 
 | |
|     def test_fft_contiguity(self):
 | |
|         r = np.random.rand(4, 8).astype(np.float32)
 | |
|         i = np.random.rand(4, 8).astype(np.float32)
 | |
|         a_np = r + 1j * i
 | |
|         a_mx = mx.array(a_np)
 | |
| 
 | |
|         # non-contiguous in the FFT dim
 | |
|         out_mx = mx.fft.fft(a_mx[:, ::2])
 | |
|         out_np = np.fft.fft(a_np[:, ::2])
 | |
|         np.testing.assert_allclose(out_np, out_mx, atol=1e-5, rtol=1e-5)
 | |
| 
 | |
|         # non-contiguous not in the FFT dim
 | |
|         out_mx = mx.fft.fft(a_mx[::2])
 | |
|         out_np = np.fft.fft(a_np[::2])
 | |
|         np.testing.assert_allclose(out_np, out_mx, atol=1e-5, rtol=1e-5)
 | |
| 
 | |
|         out_mx = mx.broadcast_to(mx.reshape(mx.transpose(a_mx), (4, 8, 1)), (4, 8, 16))
 | |
|         out_np = np.broadcast_to(np.reshape(np.transpose(a_np), (4, 8, 1)), (4, 8, 16))
 | |
|         np.testing.assert_allclose(out_np, out_mx, atol=1e-5, rtol=1e-5)
 | |
| 
 | |
|         out2_mx = mx.fft.fft(mx.abs(out_mx) + 4)
 | |
|         out2_np = np.fft.fft(np.abs(out_np) + 4)
 | |
|         np.testing.assert_allclose(out2_mx, out2_np, atol=1e-5, rtol=1e-5)
 | |
| 
 | |
|         b_np = np.array([[0, 1, 2, 3]])
 | |
|         out_mx = mx.abs(mx.fft.fft(mx.tile(mx.reshape(mx.array(b_np), (1, 4)), (4, 1))))
 | |
|         out_np = np.abs(np.fft.fft(np.tile(np.reshape(np.array(b_np), (1, 4)), (4, 1))))
 | |
|         np.testing.assert_allclose(out_mx, out_np, atol=1e-5, rtol=1e-5)
 | |
| 
 | |
|     def test_fft_into_ifft(self):
 | |
|         n_fft = 8193
 | |
|         mx.random.seed(0)
 | |
| 
 | |
|         segment = mx.random.normal(shape=[1, n_fft]) + 1j * mx.random.normal(
 | |
|             shape=(1, n_fft)
 | |
|         )
 | |
|         segment = mx.fft.fft(segment, n=n_fft)
 | |
|         r = mx.fft.ifft(segment, n=n_fft)
 | |
|         r_np = np.fft.ifft(segment, n=n_fft)
 | |
|         self.assertTrue(np.allclose(r, r_np, atol=1e-5, rtol=1e-5))
 | |
| 
 | |
|     def test_fft_throws(self):
 | |
|         x = mx.array(3.0)
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.fft.irfftn(x)
 | |
| 
 | |
|     def test_fftshift(self):
 | |
|         # Test 1D arrays
 | |
|         r = np.random.rand(100).astype(np.float32)
 | |
|         self.check_mx_np(mx.fft.fftshift, np.fft.fftshift, r)
 | |
| 
 | |
|         # Test with specific axis
 | |
|         r = np.random.rand(4, 6).astype(np.float32)
 | |
|         self.check_mx_np(mx.fft.fftshift, np.fft.fftshift, r, axes=[0])
 | |
|         self.check_mx_np(mx.fft.fftshift, np.fft.fftshift, r, axes=[1])
 | |
|         self.check_mx_np(mx.fft.fftshift, np.fft.fftshift, r, axes=[0, 1])
 | |
| 
 | |
|         # Test with negative axes
 | |
|         self.check_mx_np(mx.fft.fftshift, np.fft.fftshift, r, axes=[-1])
 | |
| 
 | |
|         # Test with odd lengths
 | |
|         r = np.random.rand(5, 7).astype(np.float32)
 | |
|         self.check_mx_np(mx.fft.fftshift, np.fft.fftshift, r)
 | |
|         self.check_mx_np(mx.fft.fftshift, np.fft.fftshift, r, axes=[0])
 | |
| 
 | |
|         # Test with complex input
 | |
|         r = np.random.rand(8, 8).astype(np.float32)
 | |
|         i = np.random.rand(8, 8).astype(np.float32)
 | |
|         c = r + 1j * i
 | |
|         self.check_mx_np(mx.fft.fftshift, np.fft.fftshift, c)
 | |
| 
 | |
|     def test_ifftshift(self):
 | |
|         # Test 1D arrays
 | |
|         r = np.random.rand(100).astype(np.float32)
 | |
|         self.check_mx_np(mx.fft.ifftshift, np.fft.ifftshift, r)
 | |
| 
 | |
|         # Test with specific axis
 | |
|         r = np.random.rand(4, 6).astype(np.float32)
 | |
|         self.check_mx_np(mx.fft.ifftshift, np.fft.ifftshift, r, axes=[0])
 | |
|         self.check_mx_np(mx.fft.ifftshift, np.fft.ifftshift, r, axes=[1])
 | |
|         self.check_mx_np(mx.fft.ifftshift, np.fft.ifftshift, r, axes=[0, 1])
 | |
| 
 | |
|         # Test with negative axes
 | |
|         self.check_mx_np(mx.fft.ifftshift, np.fft.ifftshift, r, axes=[-1])
 | |
| 
 | |
|         # Test with odd lengths
 | |
|         r = np.random.rand(5, 7).astype(np.float32)
 | |
|         self.check_mx_np(mx.fft.ifftshift, np.fft.ifftshift, r)
 | |
|         self.check_mx_np(mx.fft.ifftshift, np.fft.ifftshift, r, axes=[0])
 | |
| 
 | |
|         # Test with complex input
 | |
|         r = np.random.rand(8, 8).astype(np.float32)
 | |
|         i = np.random.rand(8, 8).astype(np.float32)
 | |
|         c = r + 1j * i
 | |
|         self.check_mx_np(mx.fft.ifftshift, np.fft.ifftshift, c)
 | |
| 
 | |
|     def test_fftshift_errors(self):
 | |
|         # Test invalid axes
 | |
|         x = mx.array(np.random.rand(4, 4).astype(np.float32))
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.fft.fftshift(x, axes=[2])
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.fft.fftshift(x, axes=[-3])
 | |
| 
 | |
|         # Test empty array
 | |
|         x = mx.array([])
 | |
|         self.assertTrue(mx.array_equal(mx.fft.fftshift(x), x))
 | |
| 
 | |
|     @unittest.skipIf(not has_torch, "requires PyTorch")
 | |
|     def test_fft_grads(self):
 | |
|         real = [True, False]
 | |
|         inverse = [True, False]
 | |
|         axes = [
 | |
|             (-1,),
 | |
|             (-2, -1),
 | |
|         ]
 | |
|         shapes = [
 | |
|             (4, 4),
 | |
|             (2, 4),
 | |
|             (2, 7),
 | |
|             (7, 7),
 | |
|         ]
 | |
| 
 | |
|         mxffts = {
 | |
|             (True, True): mx.fft.irfftn,
 | |
|             (True, False): mx.fft.rfftn,
 | |
|             (False, True): mx.fft.ifftn,
 | |
|             (False, False): mx.fft.fftn,
 | |
|         }
 | |
|         tffts = {
 | |
|             (True, True): torch.fft.irfftn,
 | |
|             (True, False): torch.fft.rfftn,
 | |
|             (False, True): torch.fft.ifftn,
 | |
|             (False, False): torch.fft.fftn,
 | |
|         }
 | |
| 
 | |
|         for r, i, ax, sh in itertools.product(real, inverse, axes, shapes):
 | |
| 
 | |
|             def f(x):
 | |
|                 y = mxffts[r, i](x)
 | |
|                 return (mx.abs(y) ** 2).sum()
 | |
| 
 | |
|             def g(x):
 | |
|                 y = tffts[r, i](x)
 | |
|                 return (torch.abs(y) ** 2).sum()
 | |
| 
 | |
|             if r and not i:
 | |
|                 x = mx.random.normal(sh)
 | |
|             else:
 | |
|                 x = mx.random.normal((*sh, 2)).view(mx.complex64).squeeze()
 | |
|             fx = f(x)
 | |
|             gx = g(torch.tensor(x))
 | |
|             self.assertLess((fx - gx).abs().max() / gx.abs().mean(), 1e-4)
 | |
| 
 | |
|             dfdx = mx.grad(f)(x)
 | |
|             dgdx = torch.func.grad(g)(torch.tensor(x))
 | |
|             self.assertLess((dfdx - dgdx).abs().max() / dgdx.abs().mean(), 1e-4)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     mlx_tests.MLXTestRunner()
 | 
