mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			425 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			425 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023 Apple Inc.
 | |
| 
 | |
| import os
 | |
| import tempfile
 | |
| import unittest
 | |
| from pathlib import Path
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx_tests
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| class TestLoad(mlx_tests.MLXTestCase):
 | |
|     dtypes = [
 | |
|         "uint8",
 | |
|         "uint16",
 | |
|         "uint32",
 | |
|         "uint64",
 | |
|         "int8",
 | |
|         "int16",
 | |
|         "int32",
 | |
|         "int64",
 | |
|         "float32",
 | |
|         "float16",
 | |
|         "complex64",
 | |
|     ]
 | |
| 
 | |
|     @classmethod
 | |
|     def setUpClass(cls):
 | |
|         cls.test_dir_fid = tempfile.TemporaryDirectory()
 | |
|         cls.test_dir = cls.test_dir_fid.name
 | |
|         if not os.path.isdir(cls.test_dir):
 | |
|             os.mkdir(cls.test_dir)
 | |
| 
 | |
|     @classmethod
 | |
|     def tearDownClass(cls):
 | |
|         cls.test_dir_fid.cleanup()
 | |
| 
 | |
|     def test_save_and_load(self):
 | |
|         for dt in self.dtypes:
 | |
|             with self.subTest(dtype=dt):
 | |
|                 for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]):
 | |
|                     with self.subTest(shape=shape):
 | |
|                         save_file_mlx = os.path.join(self.test_dir, f"mlx_{dt}_{i}.npy")
 | |
|                         save_file_npy = os.path.join(self.test_dir, f"npy_{dt}_{i}.npy")
 | |
| 
 | |
|                         save_arr = np.random.uniform(0.0, 32.0, size=shape)
 | |
|                         save_arr_npy = save_arr.astype(getattr(np, dt))
 | |
|                         save_arr_mlx = mx.array(save_arr_npy)
 | |
| 
 | |
|                         mx.save(save_file_mlx, save_arr_mlx)
 | |
|                         np.save(save_file_npy, save_arr_npy)
 | |
| 
 | |
|                         # Load array saved by mlx as mlx array
 | |
|                         load_arr_mlx_mlx = mx.load(save_file_mlx)
 | |
|                         self.assertTrue(mx.array_equal(load_arr_mlx_mlx, save_arr_mlx))
 | |
| 
 | |
|                         # Load array saved by numpy as mlx array
 | |
|                         load_arr_npy_mlx = mx.load(save_file_npy)
 | |
|                         self.assertTrue(mx.array_equal(load_arr_npy_mlx, save_arr_mlx))
 | |
| 
 | |
|                         # Load array saved by mlx as numpy array
 | |
|                         load_arr_mlx_npy = np.load(save_file_mlx)
 | |
|                         self.assertTrue(np.array_equal(load_arr_mlx_npy, save_arr_npy))
 | |
| 
 | |
|         save_file = os.path.join(self.test_dir, f"mlx_path.npy")
 | |
|         save_arr = mx.ones((32,))
 | |
|         mx.save(Path(save_file), save_arr)
 | |
| 
 | |
|         # Load array saved by mlx as mlx array
 | |
|         load_arr = mx.load(Path(save_file))
 | |
|         self.assertTrue(mx.array_equal(load_arr, save_arr))
 | |
| 
 | |
|     def test_save_and_load_safetensors(self):
 | |
|         test_file = os.path.join(self.test_dir, "test.safetensors")
 | |
|         with self.assertRaises(Exception):
 | |
|             mx.save_safetensors(test_file, {"a": mx.ones((4, 4))}, {"testing": 0})
 | |
| 
 | |
|         for obj in [str, Path]:
 | |
|             mx.save_safetensors(
 | |
|                 obj(test_file),
 | |
|                 {"test": mx.ones((2, 2))},
 | |
|                 {"testing": "test", "format": "mlx"},
 | |
|             )
 | |
|             res = mx.load(obj(test_file), return_metadata=True)
 | |
|             self.assertEqual(len(res), 2)
 | |
|             self.assertEqual(res[1], {"testing": "test", "format": "mlx"})
 | |
| 
 | |
|         for dt in self.dtypes + ["bfloat16"]:
 | |
|             with self.subTest(dtype=dt):
 | |
|                 for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]):
 | |
|                     with self.subTest(shape=shape):
 | |
|                         save_file_mlx = os.path.join(
 | |
|                             self.test_dir, f"mlx_{dt}_{i}_fs.safetensors"
 | |
|                         )
 | |
|                         save_dict = {
 | |
|                             "test": (
 | |
|                                 mx.random.normal(shape=shape, dtype=getattr(mx, dt))
 | |
|                                 if dt in ["float32", "float16", "bfloat16"]
 | |
|                                 else mx.ones(shape, dtype=getattr(mx, dt))
 | |
|                             )
 | |
|                         }
 | |
| 
 | |
|                         with open(save_file_mlx, "wb") as f:
 | |
|                             mx.save_safetensors(f, save_dict)
 | |
|                         with open(save_file_mlx, "rb") as f:
 | |
|                             load_dict = mx.load(f)
 | |
| 
 | |
|                         self.assertTrue("test" in load_dict)
 | |
|                         self.assertTrue(
 | |
|                             mx.array_equal(load_dict["test"], save_dict["test"])
 | |
|                         )
 | |
| 
 | |
|     def test_save_and_load_gguf(self):
 | |
|         if not os.path.isdir(self.test_dir):
 | |
|             os.mkdir(self.test_dir)
 | |
| 
 | |
|         # TODO: Add support for other dtypes (self.dtypes + ["bfloat16"])
 | |
|         supported_dtypes = ["float16", "float32", "int8", "int16", "int32"]
 | |
|         for dt in supported_dtypes:
 | |
|             with self.subTest(dtype=dt):
 | |
|                 for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]):
 | |
|                     with self.subTest(shape=shape):
 | |
|                         save_file_mlx = os.path.join(
 | |
|                             self.test_dir, f"mlx_{dt}_{i}_fs.gguf"
 | |
|                         )
 | |
|                         save_dict = {
 | |
|                             "test": (
 | |
|                                 mx.random.normal(shape=shape, dtype=getattr(mx, dt))
 | |
|                                 if dt in ["float32", "float16", "bfloat16"]
 | |
|                                 else mx.ones(shape, dtype=getattr(mx, dt))
 | |
|                             )
 | |
|                         }
 | |
| 
 | |
|                         mx.save_gguf(save_file_mlx, save_dict)
 | |
|                         load_dict = mx.load(save_file_mlx)
 | |
| 
 | |
|                         self.assertTrue("test" in load_dict)
 | |
|                         self.assertTrue(
 | |
|                             mx.array_equal(load_dict["test"], save_dict["test"])
 | |
|                         )
 | |
| 
 | |
|         save_file_mlx = os.path.join(self.test_dir, f"mlx_path_test_fs.gguf")
 | |
|         save_dict = {"test": mx.ones(shape)}
 | |
|         mx.save_gguf(Path(save_file_mlx), save_dict)
 | |
|         load_dict = mx.load(Path(save_file_mlx))
 | |
|         self.assertTrue("test" in load_dict)
 | |
|         self.assertTrue(mx.array_equal(load_dict["test"], save_dict["test"]))
 | |
| 
 | |
|     def test_load_f8_e4m3(self):
 | |
|         if not os.path.isdir(self.test_dir):
 | |
|             os.mkdir(self.test_dir)
 | |
| 
 | |
|         expected = [
 | |
|             0,
 | |
|             mx.nan,
 | |
|             mx.nan,
 | |
|             -0.875,
 | |
|             0.4375,
 | |
|             -0.005859,
 | |
|             -1.25,
 | |
|             -1.25,
 | |
|             -1.5,
 | |
|             -0.0039,
 | |
|         ]
 | |
|         expected = mx.array(expected, dtype=mx.bfloat16)
 | |
|         contents = b'H\x00\x00\x00\x00\x00\x00\x00{"tensor":{"dtype":"F8_E4M3","shape":[10],"data_offsets":[0,10]}}       \x00\x7f\xff\xb6.\x83\xba\xba\xbc\x82'
 | |
|         with tempfile.NamedTemporaryFile(suffix=".safetensors") as f:
 | |
|             f.write(contents)
 | |
|             f.seek(0)
 | |
|             out = mx.load(f)["tensor"]
 | |
|         self.assertTrue(mx.allclose(out[0], expected[0], equal_nan=True))
 | |
| 
 | |
|     def test_save_and_load_gguf_metadata_basic(self):
 | |
|         if not os.path.isdir(self.test_dir):
 | |
|             os.mkdir(self.test_dir)
 | |
| 
 | |
|         save_file_mlx = os.path.join(self.test_dir, f"mlx_gguf_with_metadata.gguf")
 | |
|         save_dict = {"test": mx.ones((4, 4), dtype=mx.int32)}
 | |
|         metadata = {}
 | |
| 
 | |
|         # Empty works
 | |
|         mx.save_gguf(save_file_mlx, save_dict, metadata)
 | |
| 
 | |
|         # Loads without the metadata
 | |
|         load_dict = mx.load(save_file_mlx)
 | |
|         self.assertTrue("test" in load_dict)
 | |
|         self.assertTrue(mx.array_equal(load_dict["test"], save_dict["test"]))
 | |
| 
 | |
|         # Loads empty metadata
 | |
|         load_dict, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
 | |
|         self.assertTrue("test" in load_dict)
 | |
|         self.assertTrue(mx.array_equal(load_dict["test"], save_dict["test"]))
 | |
|         self.assertEqual(len(meta_load_dict), 0)
 | |
| 
 | |
|         # Loads string metadata
 | |
|         metadata = {"meta": "data"}
 | |
|         mx.save_gguf(save_file_mlx, save_dict, metadata)
 | |
|         load_dict, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
 | |
|         self.assertTrue("test" in load_dict)
 | |
|         self.assertTrue(mx.array_equal(load_dict["test"], save_dict["test"]))
 | |
|         self.assertEqual(len(meta_load_dict), 1)
 | |
|         self.assertTrue("meta" in meta_load_dict)
 | |
|         self.assertEqual(meta_load_dict["meta"], "data")
 | |
| 
 | |
|     def test_save_and_load_gguf_metadata_arrays(self):
 | |
|         if not os.path.isdir(self.test_dir):
 | |
|             os.mkdir(self.test_dir)
 | |
| 
 | |
|         save_file_mlx = os.path.join(self.test_dir, f"mlx_gguf_with_metadata.gguf")
 | |
|         save_dict = {"test": mx.ones((4, 4), dtype=mx.int32)}
 | |
| 
 | |
|         # Test scalars and one dimensional arrays
 | |
|         for t in [
 | |
|             mx.uint8,
 | |
|             mx.int8,
 | |
|             mx.uint16,
 | |
|             mx.int16,
 | |
|             mx.uint32,
 | |
|             mx.int32,
 | |
|             mx.uint64,
 | |
|             mx.int64,
 | |
|             mx.float32,
 | |
|         ]:
 | |
|             for shape in [(), (2,)]:
 | |
|                 arr = mx.random.uniform(shape=shape).astype(t)
 | |
|                 metadata = {"meta": arr}
 | |
|                 mx.save_gguf(save_file_mlx, save_dict, metadata)
 | |
|                 _, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
 | |
|                 self.assertEqual(len(meta_load_dict), 1)
 | |
|                 self.assertTrue("meta" in meta_load_dict)
 | |
|                 self.assertTrue(mx.array_equal(meta_load_dict["meta"], arr))
 | |
|                 self.assertEqual(meta_load_dict["meta"].dtype, arr.dtype)
 | |
| 
 | |
|         for t in [mx.float16, mx.bfloat16, mx.complex64]:
 | |
|             with self.assertRaises(ValueError):
 | |
|                 arr = mx.array(1, t)
 | |
|                 metadata = {"meta": arr}
 | |
|                 mx.save_gguf(save_file_mlx, save_dict, metadata)
 | |
| 
 | |
|     def test_save_and_load_gguf_metadata_mixed(self):
 | |
|         if not os.path.isdir(self.test_dir):
 | |
|             os.mkdir(self.test_dir)
 | |
| 
 | |
|         save_file_mlx = os.path.join(self.test_dir, f"mlx_gguf_with_metadata.gguf")
 | |
|         save_dict = {"test": mx.ones((4, 4), dtype=mx.int32)}
 | |
| 
 | |
|         # Test string and array
 | |
|         arr = mx.array(1.5)
 | |
|         metadata = {"meta1": arr, "meta2": "data"}
 | |
|         mx.save_gguf(save_file_mlx, save_dict, metadata)
 | |
|         _, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
 | |
|         self.assertEqual(len(meta_load_dict), 2)
 | |
|         self.assertTrue("meta1" in meta_load_dict)
 | |
|         self.assertTrue(mx.array_equal(meta_load_dict["meta1"], arr))
 | |
|         self.assertEqual(meta_load_dict["meta1"].dtype, arr.dtype)
 | |
|         self.assertTrue("meta2" in meta_load_dict)
 | |
|         self.assertEqual(meta_load_dict["meta2"], "data")
 | |
| 
 | |
|         # Test list of strings
 | |
|         metadata = {"meta": ["data1", "data2", "data345"]}
 | |
|         mx.save_gguf(save_file_mlx, save_dict, metadata)
 | |
|         _, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
 | |
|         self.assertEqual(len(meta_load_dict), 1)
 | |
|         self.assertEqual(meta_load_dict["meta"], metadata["meta"])
 | |
| 
 | |
|         # Test a combination of stuff
 | |
|         metadata = {
 | |
|             "meta1": ["data1", "data2", "data345"],
 | |
|             "meta2": mx.array([1, 2, 3, 4]),
 | |
|             "meta3": "data",
 | |
|             "meta4": mx.array(1.5),
 | |
|         }
 | |
|         mx.save_gguf(save_file_mlx, save_dict, metadata)
 | |
|         _, meta_load_dict = mx.load(save_file_mlx, return_metadata=True)
 | |
|         self.assertEqual(len(meta_load_dict), 4)
 | |
|         for k, v in metadata.items():
 | |
|             if isinstance(v, mx.array):
 | |
|                 self.assertTrue(mx.array_equal(meta_load_dict[k], v))
 | |
|             else:
 | |
|                 self.assertEqual(meta_load_dict[k], v)
 | |
| 
 | |
|     def test_save_and_load_fs(self):
 | |
|         if not os.path.isdir(self.test_dir):
 | |
|             os.mkdir(self.test_dir)
 | |
| 
 | |
|         for dt in self.dtypes:
 | |
|             with self.subTest(dtype=dt):
 | |
|                 for i, shape in enumerate([(1,), (23,), (1024, 1024), (4, 6, 3, 1, 2)]):
 | |
|                     with self.subTest(shape=shape):
 | |
|                         save_file_mlx = os.path.join(
 | |
|                             self.test_dir, f"mlx_{dt}_{i}_fs.npy"
 | |
|                         )
 | |
|                         save_file_npy = os.path.join(
 | |
|                             self.test_dir, f"npy_{dt}_{i}_fs.npy"
 | |
|                         )
 | |
| 
 | |
|                         save_arr = np.random.uniform(0.0, 32.0, size=shape)
 | |
|                         save_arr_npy = save_arr.astype(getattr(np, dt))
 | |
|                         save_arr_mlx = mx.array(save_arr_npy)
 | |
| 
 | |
|                         with open(save_file_mlx, "wb") as f:
 | |
|                             mx.save(f, save_arr_mlx)
 | |
| 
 | |
|                         np.save(save_file_npy, save_arr_npy)
 | |
| 
 | |
|                         # Load array saved by mlx as mlx array
 | |
|                         with open(save_file_mlx, "rb") as f:
 | |
|                             load_arr_mlx_mlx = mx.load(f)
 | |
|                         self.assertTrue(mx.array_equal(load_arr_mlx_mlx, save_arr_mlx))
 | |
| 
 | |
|                         # Load array saved by numpy as mlx array
 | |
|                         with open(save_file_npy, "rb") as f:
 | |
|                             load_arr_npy_mlx = mx.load(f)
 | |
|                         self.assertTrue(mx.array_equal(load_arr_npy_mlx, save_arr_mlx))
 | |
| 
 | |
|                         # Load array saved by mlx as numpy array
 | |
|                         load_arr_mlx_npy = np.load(save_file_mlx)
 | |
|                         self.assertTrue(np.array_equal(load_arr_mlx_npy, save_arr_npy))
 | |
| 
 | |
|     def test_savez_and_loadz(self):
 | |
|         if not os.path.isdir(self.test_dir):
 | |
|             os.mkdir(self.test_dir)
 | |
| 
 | |
|         for dt in self.dtypes:
 | |
|             with self.subTest(dtype=dt):
 | |
|                 shapes = [(6,), (6, 6), (4, 1, 3, 1, 2)]
 | |
|                 save_file_mlx_uncomp = os.path.join(
 | |
|                     self.test_dir, f"mlx_{dt}_uncomp.npz"
 | |
|                 )
 | |
|                 save_file_npy_uncomp = os.path.join(
 | |
|                     self.test_dir, f"npy_{dt}_uncomp.npz"
 | |
|                 )
 | |
|                 save_file_mlx_comp = os.path.join(self.test_dir, f"mlx_{dt}_comp.npz")
 | |
|                 save_file_npy_comp = os.path.join(self.test_dir, f"npy_{dt}_comp.npz")
 | |
| 
 | |
|                 # Make dictionary of multiple
 | |
|                 save_arrs_npy = {
 | |
|                     f"save_arr_{i}": np.random.uniform(
 | |
|                         0.0, 32.0, size=shapes[i]
 | |
|                     ).astype(getattr(np, dt))
 | |
|                     for i in range(len(shapes))
 | |
|                 }
 | |
|                 save_arrs_mlx = {k: mx.array(v) for k, v in save_arrs_npy.items()}
 | |
| 
 | |
|                 # Save as npz files
 | |
|                 np.savez(save_file_npy_uncomp, **save_arrs_npy)
 | |
|                 mx.savez(save_file_mlx_uncomp, **save_arrs_mlx)
 | |
|                 np.savez_compressed(save_file_npy_comp, **save_arrs_npy)
 | |
|                 mx.savez_compressed(save_file_mlx_comp, **save_arrs_mlx)
 | |
| 
 | |
|                 for save_file_npy, save_file_mlx in (
 | |
|                     (save_file_npy_uncomp, save_file_mlx_uncomp),
 | |
|                     (save_file_npy_comp, save_file_mlx_comp),
 | |
|                 ):
 | |
|                     # Load array saved by mlx as mlx array
 | |
|                     load_arr_mlx_mlx = mx.load(save_file_mlx)
 | |
|                     for k, v in load_arr_mlx_mlx.items():
 | |
|                         self.assertTrue(mx.array_equal(save_arrs_mlx[k], v))
 | |
| 
 | |
|                     # Load arrays saved by numpy as mlx arrays
 | |
|                     load_arr_npy_mlx = mx.load(save_file_npy)
 | |
|                     for k, v in load_arr_npy_mlx.items():
 | |
|                         self.assertTrue(mx.array_equal(save_arrs_mlx[k], v))
 | |
| 
 | |
|                     # Load array saved by mlx as numpy array
 | |
|                     load_arr_mlx_npy = np.load(save_file_mlx)
 | |
|                     for k, v in load_arr_mlx_npy.items():
 | |
|                         self.assertTrue(np.array_equal(save_arrs_npy[k], v))
 | |
| 
 | |
|     def test_non_contiguous(self):
 | |
|         a = mx.broadcast_to(mx.array([1, 2]), [4, 2])
 | |
| 
 | |
|         save_file = os.path.join(self.test_dir, "a.npy")
 | |
|         mx.save(save_file, a)
 | |
|         aload = mx.load(save_file)
 | |
|         self.assertTrue(mx.array_equal(a, aload))
 | |
| 
 | |
|         save_file = os.path.join(self.test_dir, "a.safetensors")
 | |
|         mx.save_safetensors(save_file, {"a": a})
 | |
|         aload = mx.load(save_file)["a"]
 | |
|         self.assertTrue(mx.array_equal(a, aload))
 | |
| 
 | |
|         save_file = os.path.join(self.test_dir, "a.gguf")
 | |
|         mx.save_gguf(save_file, {"a": a})
 | |
|         aload = mx.load(save_file)["a"]
 | |
|         self.assertTrue(mx.array_equal(a, aload))
 | |
| 
 | |
|         # safetensors and gguf only work with row contiguous
 | |
|         # make sure col contiguous is handled properly
 | |
|         save_file = os.path.join(self.test_dir, "a.safetensors")
 | |
|         a = mx.arange(4).reshape(2, 2).T
 | |
|         mx.save_safetensors(save_file, {"a": a})
 | |
|         aload = mx.load(save_file)["a"]
 | |
|         self.assertTrue(mx.array_equal(a, aload))
 | |
| 
 | |
|         save_file = os.path.join(self.test_dir, "a.gguf")
 | |
|         mx.save_gguf(save_file, {"a": a})
 | |
|         aload = mx.load(save_file)["a"]
 | |
|         self.assertTrue(mx.array_equal(a, aload))
 | |
| 
 | |
|     def test_load_donation(self):
 | |
|         x = mx.random.normal((1024,))
 | |
|         mx.eval(x)
 | |
|         save_file = os.path.join(self.test_dir, "donation.npy")
 | |
|         mx.save(save_file, x)
 | |
|         mx.synchronize()
 | |
| 
 | |
|         mx.reset_peak_memory()
 | |
|         scale = mx.array(2.0)
 | |
|         y = mx.load(save_file)
 | |
|         mx.eval(y)
 | |
|         mx.synchronize()
 | |
|         load_only = mx.get_peak_memory()
 | |
|         y = mx.load(save_file) * scale
 | |
|         mx.eval(y)
 | |
|         mx.synchronize()
 | |
|         load_with_binary = mx.get_peak_memory()
 | |
| 
 | |
|         self.assertEqual(load_only, load_with_binary)
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     mlx_tests.MLXTestRunner()
 | 
