mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-10-31 16:21:27 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			3127 lines
		
	
	
		
			108 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			3127 lines
		
	
	
		
			108 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # Copyright © 2023-2024 Apple Inc.
 | |
| 
 | |
| import math
 | |
| import os
 | |
| import unittest
 | |
| from itertools import permutations, product
 | |
| 
 | |
| import mlx.core as mx
 | |
| import mlx_tests
 | |
| import numpy as np
 | |
| 
 | |
| 
 | |
| def np_wrap_between(x, a):
 | |
|     """Wraps `x` between `[-a, a]`."""
 | |
|     two_a = 2 * a
 | |
|     zero = 0
 | |
|     rem = np.remainder(np.add(x, a), two_a)
 | |
|     if isinstance(rem, np.ndarray):
 | |
|         rem = np.select(rem < zero, np.add(rem, two_a), rem)
 | |
|     else:
 | |
|         rem = np.add(rem, two_a) if rem < zero else rem
 | |
|     return np.subtract(rem, a)
 | |
| 
 | |
| 
 | |
| def np_logaddexp(x1: np.ndarray, x2: np.ndarray):
 | |
|     amax = np.maximum(x1, x2)
 | |
|     if np.issubdtype(x1.dtype, np.floating):
 | |
|         delta = np.subtract(x1, x2)
 | |
|         if isinstance(delta, np.ndarray):
 | |
|             return np.select(
 | |
|                 np.isnan(delta),
 | |
|                 np.add(x1, x2),
 | |
|                 np.add(amax, np.log1p(np.exp(np.negative(np.abs(delta))))),
 | |
|             )
 | |
|         else:
 | |
|             return (
 | |
|                 np.add(x1, x2)
 | |
|                 if np.isnan(delta)
 | |
|                 else np.add(amax, np.log1p(np.exp(np.negative(np.abs(delta)))))
 | |
|             )
 | |
|     else:
 | |
|         delta = np.subtract(np.add(x1, x2), np.multiply(amax, 2))
 | |
|         out = np.add(amax, np.log1p(np.exp(delta)))
 | |
|         return np.real(out) + 1j * np_wrap_between(np.imag(out), np.pi)
 | |
| 
 | |
| 
 | |
| def np_cumlogaddexp(x1: np.ndarray, axis: int = -1):
 | |
|     out = x1.copy()
 | |
|     for i in range(1, out.shape[axis]):
 | |
|         out[i] = np_logaddexp(out[i], out[i - 1])
 | |
|     return out
 | |
| 
 | |
| 
 | |
| class TestOps(mlx_tests.MLXTestCase):
 | |
|     def test_full_ones_zeros(self):
 | |
|         x = mx.full(2, 3.0)
 | |
|         self.assertEqual(x.shape, (2,))
 | |
|         self.assertEqual(x.tolist(), [3.0, 3.0])
 | |
| 
 | |
|         x = mx.full((2, 3), 2.0)
 | |
|         self.assertEqual(x.dtype, mx.float32)
 | |
|         self.assertEqual(x.shape, (2, 3))
 | |
|         self.assertEqual(x.tolist(), [[2, 2, 2], [2, 2, 2]])
 | |
| 
 | |
|         x = mx.full([3, 2], mx.array([False, True]))
 | |
|         self.assertEqual(x.dtype, mx.bool_)
 | |
|         self.assertEqual(x.tolist(), [[False, True], [False, True], [False, True]])
 | |
| 
 | |
|         x = mx.full([3, 2], mx.array([2.0, 3.0]))
 | |
|         self.assertEqual(x.tolist(), [[2, 3], [2, 3], [2, 3]])
 | |
| 
 | |
|         x = mx.zeros(2)
 | |
|         self.assertEqual(x.shape, (2,))
 | |
|         self.assertEqual(x.tolist(), [0.0, 0.0])
 | |
| 
 | |
|         x = mx.ones(2)
 | |
|         self.assertEqual(x.shape, (2,))
 | |
|         self.assertEqual(x.tolist(), [1.0, 1.0])
 | |
| 
 | |
|         for t in [mx.bool_, mx.int32, mx.float32]:
 | |
|             x = mx.zeros([2, 2], t)
 | |
|             self.assertEqual(x.dtype, t)
 | |
|             self.assertTrue(mx.array_equal(x, mx.array([[0, 0], [0, 0]])))
 | |
|             y = mx.zeros_like(x)
 | |
|             self.assertEqual(y.dtype, t)
 | |
|             self.assertTrue(mx.array_equal(y, x))
 | |
| 
 | |
|             x = mx.ones([2, 2], t)
 | |
|             self.assertEqual(x.dtype, t)
 | |
|             self.assertTrue(mx.array_equal(x, mx.array([[1, 1], [1, 1]])))
 | |
|             y = mx.ones_like(x)
 | |
|             self.assertEqual(y.dtype, t)
 | |
|             self.assertTrue(mx.array_equal(y, x))
 | |
| 
 | |
|     def test_scalar_inputs(self):
 | |
|         # Check combinations of python types
 | |
|         a = mx.add(False, True)
 | |
|         self.assertEqual(a.dtype, mx.bool_)
 | |
|         self.assertEqual(a.item(), True)
 | |
| 
 | |
|         a = mx.add(1, 2)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
|         self.assertEqual(a.item(), 3)
 | |
| 
 | |
|         a = mx.add(1.0, 2.0)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
|         self.assertEqual(a.item(), 3.0)
 | |
| 
 | |
|         a = mx.add(True, 2)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
|         self.assertEqual(a.item(), 3)
 | |
| 
 | |
|         a = mx.add(True, 2.0)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
|         self.assertEqual(a.item(), 3.0)
 | |
| 
 | |
|         a = mx.add(1, 2.0)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
|         self.assertEqual(a.item(), 3.0)
 | |
| 
 | |
|         a = mx.add(2, True)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
|         self.assertEqual(a.item(), 3)
 | |
| 
 | |
|         a = mx.add(2.0, True)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
|         self.assertEqual(a.item(), 3.0)
 | |
| 
 | |
|         a = mx.add(2.0, 1)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
|         self.assertEqual(a.item(), 3.0)
 | |
| 
 | |
|         # Check combinations with mlx arrays
 | |
|         a = mx.add(mx.array(True), False)
 | |
|         self.assertEqual(a.dtype, mx.bool_)
 | |
|         self.assertEqual(a.item(), True)
 | |
| 
 | |
|         a = mx.add(mx.array(1), False)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
|         self.assertEqual(a.item(), 1.0)
 | |
| 
 | |
|         # Edge case: take the type of the scalar
 | |
|         a = mx.add(mx.array(True), 1)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
|         self.assertEqual(a.item(), 2)
 | |
| 
 | |
|         a = mx.add(mx.array(1.0), 1)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
|         self.assertEqual(a.item(), 2.0)
 | |
| 
 | |
|         a = mx.add(1, mx.array(1.0))
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
|         self.assertEqual(a.item(), 2.0)
 | |
| 
 | |
|         binary_ops = [
 | |
|             "add",
 | |
|             "subtract",
 | |
|             "multiply",
 | |
|             "divide",
 | |
|             "floor_divide",
 | |
|             "remainder",
 | |
|             "equal",
 | |
|             "not_equal",
 | |
|             "less",
 | |
|             "greater",
 | |
|             "less_equal",
 | |
|             "greater_equal",
 | |
|             "maximum",
 | |
|             "minimum",
 | |
|         ]
 | |
| 
 | |
|         for op in binary_ops:
 | |
|             npop = getattr(np, op)
 | |
|             mlxop = getattr(mx, op)
 | |
| 
 | |
|             # Avoid subtract from bool and divide by 0
 | |
|             for x in [-1, 0, 1, -1.0, 1.0]:
 | |
|                 for y in [True, -1, 1, -1.0, 1.0]:
 | |
|                     self.assertEqual(npop(x, y).item(), mlxop(x, y).item())
 | |
| 
 | |
|     def test_add(self):
 | |
|         x = mx.array(1)
 | |
|         y = mx.array(1)
 | |
|         z = mx.add(x, y)
 | |
|         self.assertEqual(z.item(), 2)
 | |
| 
 | |
|         x = mx.array(False, mx.bool_)
 | |
|         z = x + 1
 | |
|         self.assertEqual(z.dtype, mx.int32)
 | |
|         self.assertEqual(z.item(), 1)
 | |
|         z = 2 + x
 | |
|         self.assertEqual(z.dtype, mx.int32)
 | |
|         self.assertEqual(z.item(), 2)
 | |
| 
 | |
|         x = mx.array(1, mx.uint32)
 | |
|         z = x + 3
 | |
|         self.assertEqual(z.dtype, mx.uint32)
 | |
|         self.assertEqual(z.item(), 4)
 | |
| 
 | |
|         z = 3 + x
 | |
|         self.assertEqual(z.dtype, mx.uint32)
 | |
|         self.assertEqual(z.item(), 4)
 | |
| 
 | |
|         z = x + 3.0
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 4.0)
 | |
| 
 | |
|         z = 3.0 + x
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 4.0)
 | |
| 
 | |
|         x = mx.array(1, mx.int64)
 | |
|         z = x + 3
 | |
|         self.assertEqual(z.dtype, mx.int64)
 | |
|         self.assertEqual(z.item(), 4)
 | |
|         z = 3 + x
 | |
|         self.assertEqual(z.dtype, mx.int64)
 | |
|         self.assertEqual(z.item(), 4)
 | |
|         z = x + 3.0
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 4.0)
 | |
|         z = 3.0 + x
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 4.0)
 | |
| 
 | |
|         x = mx.array(1, mx.float32)
 | |
|         z = x + 3
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 4)
 | |
|         z = 3 + x
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 4)
 | |
| 
 | |
|     def test_subtract(self):
 | |
|         x = mx.array(4.0)
 | |
|         y = mx.array(3.0)
 | |
| 
 | |
|         z = mx.subtract(x, y)
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 1.0)
 | |
| 
 | |
|         z = x - 3.0
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 1.0)
 | |
| 
 | |
|         z = 5.0 - x
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 1.0)
 | |
| 
 | |
|     def test_multiply(self):
 | |
|         x = mx.array(2.0)
 | |
|         y = mx.array(3.0)
 | |
| 
 | |
|         z = mx.multiply(x, y)
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 6.0)
 | |
| 
 | |
|         z = x * 3.0
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 6.0)
 | |
| 
 | |
|         z = 3.0 * x
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 6.0)
 | |
| 
 | |
|     def test_divide(self):
 | |
|         x = mx.array(2.0)
 | |
|         y = mx.array(4.0)
 | |
| 
 | |
|         z = mx.divide(x, y)
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 0.5)
 | |
| 
 | |
|         z = x / 4.0
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 0.5)
 | |
| 
 | |
|         z = 1.0 / x
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 0.5)
 | |
| 
 | |
|         x = x.astype(mx.float16)
 | |
|         z = x / 4.0
 | |
|         self.assertEqual(z.dtype, mx.float16)
 | |
| 
 | |
|         x = x.astype(mx.float16)
 | |
|         z = 4.0 / x
 | |
|         self.assertEqual(z.dtype, mx.float16)
 | |
| 
 | |
|         x = mx.array(5)
 | |
|         y = mx.array(2)
 | |
|         z = x / y
 | |
|         self.assertEqual(z.dtype, mx.float32)
 | |
|         self.assertEqual(z.item(), 2.5)
 | |
| 
 | |
|         z = x // y
 | |
|         self.assertEqual(z.dtype, mx.int32)
 | |
|         self.assertEqual(z.item(), 2)
 | |
| 
 | |
|     def test_remainder(self):
 | |
|         for dt in [mx.int32, mx.float32]:
 | |
|             x = mx.array(2, dtype=dt)
 | |
|             y = mx.array(4, dtype=dt)
 | |
| 
 | |
|             z1 = mx.remainder(x, y)
 | |
|             z2 = mx.remainder(y, x)
 | |
|             self.assertEqual(z1.dtype, dt)
 | |
|             self.assertEqual(z1.item(), 2)
 | |
|             self.assertEqual(z2.item(), 0)
 | |
| 
 | |
|             z = x % 4
 | |
|             self.assertEqual(z.dtype, dt)
 | |
|             self.assertEqual(z.item(), 2)
 | |
| 
 | |
|             z = 1 % x
 | |
|             self.assertEqual(z.dtype, dt)
 | |
|             self.assertEqual(z.item(), 1)
 | |
| 
 | |
|             z = -1 % x
 | |
|             self.assertEqual(z.dtype, dt)
 | |
|             self.assertEqual(z.item(), 1)
 | |
| 
 | |
|             z = -1 % -x
 | |
|             self.assertEqual(z.dtype, dt)
 | |
|             self.assertEqual(z.item(), -1)
 | |
| 
 | |
|             x = mx.arange(10).astype(dt) - 5
 | |
|             y = x % 5
 | |
|             z = x % -5
 | |
|             self.assertEqual(y.tolist(), [0, 1, 2, 3, 4, 0, 1, 2, 3, 4])
 | |
|             self.assertEqual(z.tolist(), [0, -4, -3, -2, -1, 0, -4, -3, -2, -1])
 | |
| 
 | |
|         z = -mx.ones(64) % mx.full(64, 2)
 | |
|         self.assertTrue(mx.array_equal(z, mx.ones(64)))
 | |
| 
 | |
|     def test_comparisons(self):
 | |
|         a = mx.array([0.0, 1.0, 5.0])
 | |
|         b = mx.array([-1.0, 2.0, 5.0])
 | |
| 
 | |
|         self.assertEqual(mx.less(a, b).tolist(), [False, True, False])
 | |
|         self.assertEqual(mx.less_equal(a, b).tolist(), [False, True, True])
 | |
|         self.assertEqual(mx.greater(a, b).tolist(), [True, False, False])
 | |
|         self.assertEqual(mx.greater_equal(a, b).tolist(), [True, False, True])
 | |
| 
 | |
|         self.assertEqual(mx.less(a, 5).tolist(), [True, True, False])
 | |
|         self.assertEqual(mx.less(5, a).tolist(), [False, False, False])
 | |
|         self.assertEqual(mx.less_equal(5, a).tolist(), [False, False, True])
 | |
|         self.assertEqual(mx.greater(a, 1).tolist(), [False, False, True])
 | |
|         self.assertEqual(mx.greater_equal(a, 1).tolist(), [False, True, True])
 | |
| 
 | |
|         a = mx.array([0.0, 1.0, 5.0, -1.0])
 | |
|         b = mx.array([0.0, 2.0, 5.0, 3.0])
 | |
|         self.assertEqual(mx.equal(a, b).tolist(), [True, False, True, False])
 | |
|         self.assertEqual(mx.not_equal(a, b).tolist(), [False, True, False, True])
 | |
| 
 | |
|     def test_array_equal(self):
 | |
|         x = mx.array([1, 2, 3, 4])
 | |
|         y = mx.array([1, 2, 3, 4])
 | |
|         self.assertTrue(mx.array_equal(x, y))
 | |
| 
 | |
|         y = mx.array([1, 2, 4, 5])
 | |
|         self.assertFalse(mx.array_equal(x, y))
 | |
| 
 | |
|         y = mx.array([1, 2, 3])
 | |
|         self.assertFalse(mx.array_equal(x, y))
 | |
| 
 | |
|         # Can still be equal with different types
 | |
|         y = mx.array([1.0, 2.0, 3.0, 4.0])
 | |
|         self.assertTrue(mx.array_equal(x, y))
 | |
| 
 | |
|         x = mx.array([0.0, float("nan")])
 | |
|         y = mx.array([0.0, float("nan")])
 | |
|         self.assertFalse(mx.array_equal(x, y))
 | |
|         self.assertTrue(mx.array_equal(x, y, equal_nan=True))
 | |
| 
 | |
|         for t in [mx.float32, mx.float16, mx.bfloat16, mx.complex64]:
 | |
|             with self.subTest(type=t):
 | |
|                 x = mx.array([0.0, float("nan")]).astype(t)
 | |
|                 y = mx.array([0.0, float("nan")]).astype(t)
 | |
|                 self.assertFalse(mx.array_equal(x, y))
 | |
|                 self.assertTrue(mx.array_equal(x, y, equal_nan=True))
 | |
| 
 | |
|     def test_isnan(self):
 | |
|         x = mx.array([0.0, float("nan")])
 | |
|         self.assertEqual(mx.isnan(x).tolist(), [False, True])
 | |
| 
 | |
|         x = mx.array([0.0, float("nan")]).astype(mx.float16)
 | |
|         self.assertEqual(mx.isnan(x).tolist(), [False, True])
 | |
| 
 | |
|         x = mx.array([0.0, float("nan")]).astype(mx.bfloat16)
 | |
|         self.assertEqual(mx.isnan(x).tolist(), [False, True])
 | |
| 
 | |
|         x = mx.array([0.0, float("nan")]).astype(mx.complex64)
 | |
|         self.assertEqual(mx.isnan(x).tolist(), [False, True])
 | |
| 
 | |
|         self.assertEqual(mx.isnan(0 * mx.array(float("inf"))).tolist(), True)
 | |
| 
 | |
|     def test_isinf(self):
 | |
|         x = mx.array([0.0, float("inf")])
 | |
|         self.assertEqual(mx.isinf(x).tolist(), [False, True])
 | |
| 
 | |
|         x = mx.array([0.0, float("inf")]).astype(mx.float16)
 | |
|         self.assertEqual(mx.isinf(x).tolist(), [False, True])
 | |
| 
 | |
|         x = mx.array([0.0, float("inf")]).astype(mx.bfloat16)
 | |
|         self.assertEqual(mx.isinf(x).tolist(), [False, True])
 | |
| 
 | |
|         x = mx.array([0.0, float("inf")]).astype(mx.complex64)
 | |
|         self.assertEqual(mx.isinf(x).tolist(), [False, True])
 | |
| 
 | |
|         self.assertEqual(mx.isinf(0 * mx.array(float("inf"))).tolist(), False)
 | |
| 
 | |
|         x = mx.array([-2147483648, 0, 2147483647], dtype=mx.int32)
 | |
|         result = mx.isinf(x)
 | |
|         self.assertEqual(result.tolist(), [False, False, False])
 | |
| 
 | |
|         x = mx.array([-32768, 0, 32767], dtype=mx.int16)
 | |
|         result = mx.isinf(x)
 | |
|         self.assertEqual(result.tolist(), [False, False, False])
 | |
| 
 | |
|     def test_isfinite(self):
 | |
|         x = mx.array([0.0, float("inf"), float("nan")])
 | |
|         self.assertEqual(mx.isfinite(x).tolist(), [True, False, False])
 | |
| 
 | |
|         x = x.astype(mx.float16)
 | |
|         self.assertEqual(mx.isfinite(x).tolist(), [True, False, False])
 | |
| 
 | |
|         x = x.astype(mx.bfloat16)
 | |
|         self.assertEqual(mx.isfinite(x).tolist(), [True, False, False])
 | |
| 
 | |
|     def test_tri(self):
 | |
|         for shape in [[4], [4, 4], [2, 10]]:
 | |
|             for diag in [-1, 0, 1, -2]:
 | |
|                 self.assertCmpNumpy(shape, mx.tri, np.tri, k=diag)
 | |
|         self.assertEqual(mx.tri(1, 1).dtype, mx.float32)
 | |
|         self.assertEqual(mx.tri(1, 1, dtype=mx.bfloat16).dtype, mx.bfloat16)
 | |
| 
 | |
|     def test_tril(self):
 | |
|         for diag in [-1, 0, 1, -2]:
 | |
|             self.assertCmpNumpy([(10, 10)], mx.tril, np.tril, k=diag)
 | |
| 
 | |
|         with self.assertRaises(Exception):
 | |
|             mx.tril(mx.zeros((1)))
 | |
| 
 | |
|     def test_triu(self):
 | |
|         for diag in [-1, 0, 1, -2]:
 | |
|             self.assertCmpNumpy([(10, 10)], mx.triu, np.triu, k=diag)
 | |
|         with self.assertRaises(Exception):
 | |
|             mx.triu(mx.zeros((1)))
 | |
| 
 | |
|     def test_minimum(self):
 | |
|         x = mx.array([0.0, -5, 10.0])
 | |
|         y = mx.array([1.0, -7.0, 3.0])
 | |
| 
 | |
|         expected = [0, -7, 3]
 | |
|         self.assertListEqual(mx.minimum(x, y).tolist(), expected)
 | |
| 
 | |
|         a = mx.array([float("nan")])
 | |
|         b = mx.array([0.0])
 | |
|         self.assertTrue(math.isnan(mx.minimum(a, b).item()))
 | |
|         self.assertTrue(math.isnan(mx.minimum(b, a).item()))
 | |
| 
 | |
|     def test_maximum(self):
 | |
|         x = mx.array([0.0, -5, 10.0])
 | |
|         y = mx.array([1.0, -7.0, 3.0])
 | |
| 
 | |
|         expected = [1, -5, 10]
 | |
|         self.assertListEqual(mx.maximum(x, y).tolist(), expected)
 | |
| 
 | |
|         a = mx.array([float("nan")])
 | |
|         b = mx.array([0.0])
 | |
|         self.assertTrue(math.isnan(mx.maximum(a, b).item()))
 | |
|         self.assertTrue(math.isnan(mx.maximum(b, a).item()))
 | |
| 
 | |
|     def test_floor(self):
 | |
|         x = mx.array([-22.03, 19.98, -27, 9, 0.0, -np.inf, np.inf])
 | |
|         expected = [-23, 19, -27, 9, 0, -np.inf, np.inf]
 | |
|         self.assertListEqual(mx.floor(x).tolist(), expected)
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.floor(mx.array([22 + 3j, 19 + 98j]))
 | |
| 
 | |
|     def test_ceil(self):
 | |
|         x = mx.array([-22.03, 19.98, -27, 9, 0.0, -np.inf, np.inf])
 | |
|         expected = [-22, 20, -27, 9, 0, -np.inf, np.inf]
 | |
|         self.assertListEqual(mx.ceil(x).tolist(), expected)
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.ceil(mx.array([22 + 3j, 19 + 98j]))
 | |
| 
 | |
|     def test_isposinf(self):
 | |
|         x = mx.array([0.0, float("-inf")])
 | |
|         self.assertEqual(mx.isposinf(x).tolist(), [False, False])
 | |
| 
 | |
|         x = mx.array([0.0, float("-inf")]).astype(mx.float16)
 | |
|         self.assertEqual(mx.isposinf(x).tolist(), [False, False])
 | |
| 
 | |
|         x = mx.array([0.0, float("-inf")]).astype(mx.bfloat16)
 | |
|         self.assertEqual(mx.isposinf(x).tolist(), [False, False])
 | |
| 
 | |
|         x = mx.array([0.0, float("-inf")]).astype(mx.complex64)
 | |
|         self.assertEqual(mx.isposinf(x).tolist(), [False, False])
 | |
| 
 | |
|         self.assertEqual(mx.isposinf(0 * mx.array(float("inf"))).tolist(), False)
 | |
| 
 | |
|         x = mx.array([-2147483648, 0, 2147483647], dtype=mx.int32)
 | |
|         result = mx.isposinf(x)
 | |
|         self.assertEqual(result.tolist(), [False, False, False])
 | |
| 
 | |
|         x = mx.array([-32768, 0, 32767], dtype=mx.int16)
 | |
|         result = mx.isposinf(x)
 | |
|         self.assertEqual(result.tolist(), [False, False, False])
 | |
| 
 | |
|     def test_isneginf(self):
 | |
|         x = mx.array([0.0, float("-inf")])
 | |
|         self.assertEqual(mx.isneginf(x).tolist(), [False, True])
 | |
| 
 | |
|         x = mx.array([0.0, float("-inf")]).astype(mx.float16)
 | |
|         self.assertEqual(mx.isneginf(x).tolist(), [False, True])
 | |
| 
 | |
|         x = mx.array([0.0, float("-inf")]).astype(mx.bfloat16)
 | |
|         self.assertEqual(mx.isneginf(x).tolist(), [False, True])
 | |
| 
 | |
|         x = mx.array([0.0, float("-inf")]).astype(mx.complex64)
 | |
|         self.assertEqual(mx.isneginf(x).tolist(), [False, True])
 | |
| 
 | |
|         self.assertEqual(mx.isneginf(0 * mx.array(float("inf"))).tolist(), False)
 | |
| 
 | |
|         x = mx.array([-2147483648, 0, 2147483647], dtype=mx.int32)
 | |
|         result = mx.isneginf(x)
 | |
|         self.assertEqual(result.tolist(), [False, False, False])
 | |
| 
 | |
|         x = mx.array([-32768, 0, 32767], dtype=mx.int16)
 | |
|         result = mx.isneginf(x)
 | |
|         self.assertEqual(result.tolist(), [False, False, False])
 | |
| 
 | |
|     def test_round(self):
 | |
|         # float
 | |
|         x = mx.array(
 | |
|             [0.5, -0.5, 1.5, -1.5, -21.03, 19.98, -27, 9, 0.0, -np.inf, np.inf]
 | |
|         )
 | |
|         expected = [0, -0, 2, -2, -21, 20, -27, 9, 0, -np.inf, np.inf]
 | |
|         self.assertListEqual(mx.round(x).tolist(), expected)
 | |
| 
 | |
|         # complex
 | |
|         y = mx.round(mx.array([22.2 + 3.6j, 18.5 + 98.2j]))
 | |
|         self.assertListEqual(y.tolist(), [22 + 4j, 18 + 98j])
 | |
| 
 | |
|         # decimals
 | |
|         y0 = mx.round(mx.array([15, 122], mx.int32), decimals=0)
 | |
|         y1 = mx.round(mx.array([15, 122], mx.int32), decimals=-1)
 | |
|         y2 = mx.round(mx.array([15, 122], mx.int32), decimals=-2)
 | |
|         self.assertEqual(y0.dtype, mx.int32)
 | |
|         self.assertEqual(y1.dtype, mx.int32)
 | |
|         self.assertEqual(y2.dtype, mx.int32)
 | |
|         self.assertListEqual(y0.tolist(), [15, 122])
 | |
|         self.assertListEqual(y1.tolist(), [20, 120])
 | |
|         self.assertListEqual(y2.tolist(), [0, 100])
 | |
| 
 | |
|         y1 = mx.round(mx.array([1.537, 1.471], mx.float32), decimals=1)
 | |
|         y2 = mx.round(mx.array([1.537, 1.471], mx.float32), decimals=2)
 | |
|         self.assertTrue(mx.allclose(y1, mx.array([1.5, 1.5])))
 | |
|         self.assertTrue(mx.allclose(y2, mx.array([1.54, 1.47])))
 | |
| 
 | |
|         # check round to nearest for different types
 | |
|         dtypes = [mx.bfloat16, mx.float16, mx.float32]
 | |
|         for dtype in dtypes:
 | |
|             x = mx.arange(10, dtype=dtype) - 4.5
 | |
|             x = mx.round(x)
 | |
|             self.assertEqual(
 | |
|                 x.astype(mx.float32).tolist(),
 | |
|                 [-4.0, -4.0, -2.0, -2.0, -0.0, 0.0, 2.0, 2.0, 4.0, 4.0],
 | |
|             )
 | |
| 
 | |
|     def test_transpose_noargs(self):
 | |
|         x = mx.array([[0, 1, 1], [1, 0, 0]])
 | |
| 
 | |
|         expected = [
 | |
|             [0, 1],
 | |
|             [1, 0],
 | |
|             [1, 0],
 | |
|         ]
 | |
| 
 | |
|         self.assertListEqual(mx.transpose(x).tolist(), expected)
 | |
| 
 | |
|     def test_transpose_axis(self):
 | |
|         x = mx.array(
 | |
|             [
 | |
|                 [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]],
 | |
|                 [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]],
 | |
|             ]
 | |
|         )
 | |
|         expected = [
 | |
|             [[0, 4, 8], [1, 5, 9], [2, 6, 10], [3, 7, 11]],
 | |
|             [[12, 16, 20], [13, 17, 21], [14, 18, 22], [15, 19, 23]],
 | |
|         ]
 | |
| 
 | |
|         self.assertListEqual(mx.transpose(x, axes=(0, 2, 1)).tolist(), expected)
 | |
| 
 | |
|     def test_move_swap_axes(self):
 | |
|         x = mx.zeros((2, 3, 4))
 | |
|         self.assertEqual(mx.moveaxis(x, 0, 2).shape, (3, 4, 2))
 | |
|         self.assertEqual(x.moveaxis(0, 2).shape, (3, 4, 2))
 | |
|         self.assertEqual(mx.swapaxes(x, 0, 2).shape, (4, 3, 2))
 | |
|         self.assertEqual(x.swapaxes(0, 2).shape, (4, 3, 2))
 | |
| 
 | |
|     def test_sum(self):
 | |
|         x = mx.array(
 | |
|             [
 | |
|                 [1, 2],
 | |
|                 [3, 3],
 | |
|             ]
 | |
|         )
 | |
|         self.assertEqual(mx.sum(x).item(), 9)
 | |
|         y = mx.sum(x, keepdims=True)
 | |
|         self.assertEqual(y, mx.array(9))
 | |
|         self.assertEqual(y.shape, (1, 1))
 | |
| 
 | |
|         self.assertEqual(mx.sum(x, axis=0).tolist(), [4, 5])
 | |
|         self.assertEqual(mx.sum(x, axis=1).tolist(), [3, 6])
 | |
| 
 | |
|         x_npy = np.arange(3 * 5 * 4 * 7).astype(np.float32)
 | |
|         x_npy = np.reshape(x_npy, (3, 5, 4, 7))
 | |
|         x_mlx = mx.array(x_npy)
 | |
| 
 | |
|         for axis in (None, 0, 1, 2, 3, (0, 1), (2, 3), (1, 2, 3)):
 | |
|             sum_npy = np.sum(x_npy, axis=axis)
 | |
|             sum_mlx = np.asarray(mx.sum(x_mlx, axis=axis))
 | |
|             self.assertListEqual(list(sum_npy.shape), list(sum_mlx.shape))
 | |
|             self.assertTrue(np.all(sum_npy == sum_mlx))
 | |
| 
 | |
|         x_npy = np.array([1.0, 2.0, 3.0, 4.0]).astype(np.float32)
 | |
|         x_mlx = mx.array(x_npy)
 | |
| 
 | |
|         y_npy = x_npy[0:4:2]
 | |
|         y_npy = np.broadcast_to(y_npy, (2, 2))
 | |
| 
 | |
|         y_mlx = x_mlx[0:4:2]
 | |
|         y_mlx = mx.broadcast_to(y_mlx, (2, 2))
 | |
| 
 | |
|         for axis in (None, 0, 1, (0, 1)):
 | |
|             sum_npy = np.sum(y_npy, axis=axis)
 | |
|             sum_mlx = np.asarray(mx.sum(y_mlx, axis=axis))
 | |
|             self.assertListEqual(list(sum_npy.shape), list(sum_mlx.shape))
 | |
|             self.assertTrue(np.all(sum_npy == sum_mlx))
 | |
| 
 | |
|         x_npy = (
 | |
|             np.arange(3 * 2 * 3 * 3 * 3 * 3)
 | |
|             .reshape(3, 2, 3, 3, 3, 3)
 | |
|             .astype(np.float32)
 | |
|         )
 | |
|         x_mlx = mx.array(x_npy)
 | |
| 
 | |
|         y_mlx = x_mlx.sum(axis=(0, 1, 3, 4, 5))
 | |
|         y_npy = x_npy.sum(axis=(0, 1, 3, 4, 5))
 | |
| 
 | |
|         self.assertTrue(np.array_equal(y_mlx, y_npy))
 | |
| 
 | |
|     def test_prod(self):
 | |
|         x = mx.array(
 | |
|             [
 | |
|                 [1, 2],
 | |
|                 [3, 3],
 | |
|             ]
 | |
|         )
 | |
|         self.assertEqual(mx.prod(x).item(), 18)
 | |
|         y = mx.prod(x, keepdims=True)
 | |
|         self.assertEqual(y, mx.array(18))
 | |
|         self.assertEqual(y.shape, (1, 1))
 | |
| 
 | |
|         self.assertEqual(mx.prod(x, axis=0).tolist(), [3, 6])
 | |
|         self.assertEqual(mx.prod(x, axis=1).tolist(), [2, 9])
 | |
| 
 | |
|     def test_min_and_max(self):
 | |
|         x = mx.array(
 | |
|             [
 | |
|                 [1, 2],
 | |
|                 [3, 4],
 | |
|             ]
 | |
|         )
 | |
|         self.assertEqual(mx.min(x).item(), 1)
 | |
|         self.assertEqual(mx.max(x).item(), 4)
 | |
|         y = mx.min(x, keepdims=True)
 | |
|         self.assertEqual(y.shape, (1, 1))
 | |
|         self.assertEqual(y, mx.array(1))
 | |
| 
 | |
|         y = mx.max(x, keepdims=True)
 | |
|         self.assertEqual(y.shape, (1, 1))
 | |
|         self.assertEqual(y, mx.array(4))
 | |
| 
 | |
|         self.assertEqual(mx.min(x, axis=0).tolist(), [1, 2])
 | |
|         self.assertEqual(mx.min(x, axis=1).tolist(), [1, 3])
 | |
|         self.assertEqual(mx.max(x, axis=0).tolist(), [3, 4])
 | |
|         self.assertEqual(mx.max(x, axis=1).tolist(), [2, 4])
 | |
| 
 | |
|     def test_argmin_argmax(self):
 | |
|         data = np.random.rand(10, 12, 13)
 | |
|         x = mx.array(data)
 | |
|         for op in ["argmin", "argmax"]:
 | |
|             for axis in range(3):
 | |
|                 for kd in [True, False]:
 | |
|                     a = getattr(mx, op)(x, axis, kd)
 | |
|                     b = getattr(np, op)(data, axis, keepdims=kd)
 | |
|                     self.assertEqual(a.tolist(), b.tolist())
 | |
| 
 | |
|         for op in ["argmin", "argmax"]:
 | |
|             a = getattr(mx, op)(x, keepdims=True)
 | |
|             b = getattr(np, op)(data, keepdims=True)
 | |
|             self.assertEqual(a.tolist(), b.tolist())
 | |
|             a = getattr(mx, op)(x)
 | |
|             b = getattr(np, op)(data)
 | |
|             self.assertEqual(a.item(), b)
 | |
| 
 | |
|     def test_broadcast(self):
 | |
|         a_npy = np.reshape(np.arange(200), (10, 20))
 | |
|         a_mlx = mx.array(a_npy)
 | |
| 
 | |
|         b_npy = np.broadcast_to(a_npy, (30, 10, 20))
 | |
|         b_mlx = mx.broadcast_to(a_mlx, (30, 10, 20))
 | |
|         self.assertListEqual(list(b_npy.shape), list(b_mlx.shape))
 | |
|         self.assertTrue(np.array_equal(b_npy, b_mlx))
 | |
| 
 | |
|         b_npy = np.broadcast_to(a_npy, (1, 10, 20))
 | |
|         b_mlx = mx.broadcast_to(a_mlx, (1, 10, 20))
 | |
|         self.assertListEqual(list(b_npy.shape), list(b_mlx.shape))
 | |
|         self.assertTrue(np.array_equal(b_npy, b_mlx))
 | |
| 
 | |
|         b_npy = np.broadcast_to(1, (10, 20))
 | |
|         b_mlx = mx.broadcast_to(1, (10, 20))
 | |
|         self.assertListEqual(list(b_npy.shape), list(b_mlx.shape))
 | |
|         self.assertTrue(np.array_equal(b_npy, b_mlx))
 | |
| 
 | |
|     def test_logsumexp(self):
 | |
|         def logsumexp(x, axes=None):
 | |
|             maxs = mx.max(x, axis=axes, keepdims=True)
 | |
|             return mx.log(mx.sum(mx.exp(x - maxs), axis=axes, keepdims=True)) + maxs
 | |
| 
 | |
|         x = mx.array(
 | |
|             [
 | |
|                 [1.0, 2.0],
 | |
|                 [3.0, 4.0],
 | |
|             ]
 | |
|         )
 | |
|         self.assertTrue(math.isclose(mx.logsumexp(x).item(), logsumexp(x).item()))
 | |
| 
 | |
|         x = mx.random.uniform(shape=(1025,))
 | |
|         self.assertTrue(mx.allclose(mx.logsumexp(x), logsumexp(x)))
 | |
| 
 | |
|         # Transposed
 | |
|         x = mx.random.uniform(shape=(2, 2, 8))
 | |
|         x = x.swapaxes(0, 1)
 | |
|         self.assertTrue(mx.allclose(mx.logsumexp(x), logsumexp(x)))
 | |
| 
 | |
|         # Broadcast
 | |
|         x = mx.broadcast_to(mx.random.uniform(shape=(2, 1, 8)), (2, 2, 8))
 | |
|         self.assertTrue(mx.allclose(mx.logsumexp(x), logsumexp(x)))
 | |
| 
 | |
|         # Large
 | |
|         x = mx.random.uniform(shape=(1025,))
 | |
|         x = mx.broadcast_to(mx.random.uniform(shape=(2, 1, 8)), (2, 2, 8))
 | |
|         self.assertTrue(mx.allclose(mx.logsumexp(x), logsumexp(x)))
 | |
| 
 | |
|     def test_mean(self):
 | |
|         x = mx.array(
 | |
|             [
 | |
|                 [1, 2],
 | |
|                 [3, 4],
 | |
|             ]
 | |
|         )
 | |
|         self.assertEqual(mx.mean(x).item(), 2.5)
 | |
|         y = mx.mean(x, keepdims=True)
 | |
|         self.assertEqual(y, mx.array(2.5))
 | |
|         self.assertEqual(y.shape, (1, 1))
 | |
| 
 | |
|         self.assertEqual(mx.mean(x, axis=0).tolist(), [2, 3])
 | |
|         self.assertEqual(mx.mean(x, axis=1).tolist(), [1.5, 3.5])
 | |
| 
 | |
|     def test_var(self):
 | |
|         x = mx.array(
 | |
|             [
 | |
|                 [1, 2],
 | |
|                 [3, 4],
 | |
|             ]
 | |
|         )
 | |
|         self.assertEqual(mx.var(x).item(), 1.25)
 | |
|         y = mx.var(x, keepdims=True)
 | |
|         self.assertEqual(y, mx.array(1.25))
 | |
|         self.assertEqual(y.shape, (1, 1))
 | |
| 
 | |
|         self.assertEqual(mx.var(x, axis=0).tolist(), [1.0, 1.0])
 | |
|         self.assertEqual(mx.var(x, axis=1).tolist(), [0.25, 0.25])
 | |
| 
 | |
|         x = mx.array([1.0, 2.0])
 | |
|         out = mx.var(x, ddof=2)
 | |
|         self.assertEqual(out.item(), float("inf"))
 | |
| 
 | |
|         x = mx.array([1.0, 2.0])
 | |
|         out = mx.var(x, ddof=3)
 | |
|         self.assertEqual(out.item(), float("inf"))
 | |
| 
 | |
|     def test_std(self):
 | |
|         x = mx.random.uniform(shape=(5, 5))
 | |
|         x_np = np.array(x)
 | |
|         self.assertAlmostEqual(mx.std(x).item(), x_np.std().item(), places=6)
 | |
| 
 | |
|     def test_abs(self):
 | |
|         a = mx.array([-1.0, 1.0, -2.0, 3.0])
 | |
|         result = mx.abs(a)
 | |
|         expected = np.abs(a, dtype=np.float32)
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|         self.assertTrue(np.allclose(a.abs(), abs(a)))
 | |
| 
 | |
|     def test_negative(self):
 | |
|         a = mx.array([-1.0, 1.0, -2.0, 3.0])
 | |
|         result = mx.negative(a)
 | |
|         expected = np.negative(a, dtype=np.float32)
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_sign(self):
 | |
|         a = mx.array([-1.0, 1.0, 0.0, -2.0, 3.0])
 | |
|         result = mx.sign(a)
 | |
|         expected = np.sign(a, dtype=np.float32)
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|         a = mx.array([-1.0, 1.0, 0.0, -2.0, 3.0])
 | |
|         b = mx.array([-4.0, -3.0, 1.0, 0.0, 3.0])
 | |
|         c = a + b * 1j
 | |
|         result = mx.sign(c)
 | |
|         # np.sign differs in NumPy 1 and 2 so
 | |
|         # we manually implement the NumPy 2 version here.
 | |
|         expected = c / np.abs(c)
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_logical_not(self):
 | |
|         a = mx.array([-1.0, 1.0, 0.0, 1.0, -2.0, 3.0])
 | |
|         result = mx.logical_not(a)
 | |
|         expected = np.logical_not(a)
 | |
|         self.assertTrue(np.array_equal(result, expected))
 | |
| 
 | |
|     def test_logical_and(self):
 | |
|         a = mx.array([True, False, True, False])
 | |
|         b = mx.array([True, True, False, False])
 | |
|         result = mx.logical_and(a, b)
 | |
|         expected = np.logical_and(a, b)
 | |
|         self.assertTrue(np.array_equal(result, expected))
 | |
| 
 | |
|         # test overloaded operator
 | |
|         result = a & b
 | |
|         self.assertTrue(np.array_equal(result, expected))
 | |
| 
 | |
|     def test_logical_or(self):
 | |
|         a = mx.array([True, False, True, False])
 | |
|         b = mx.array([True, True, False, False])
 | |
|         result = mx.logical_or(a, b)
 | |
|         expected = np.logical_or(a, b)
 | |
|         self.assertTrue(np.array_equal(result, expected))
 | |
| 
 | |
|         # test overloaded operator
 | |
|         result = a | b
 | |
|         self.assertTrue(np.array_equal(result, expected))
 | |
| 
 | |
|     def test_square(self):
 | |
|         a = mx.array([0.1, 0.5, 1.0, 10.0])
 | |
|         result = mx.square(a)
 | |
|         expected = np.square(a, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_sqrt(self):
 | |
|         a = mx.array([0.1, 0.5, 1.0, 10.0])
 | |
|         result = mx.sqrt(a)
 | |
|         expected = np.sqrt(a, dtype=np.float32)
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_rsqrt(self):
 | |
|         a = mx.array([0.1, 0.5, 1.0, 10.0])
 | |
|         result = mx.rsqrt(a)
 | |
|         expected = 1.0 / np.sqrt(a, dtype=np.float32)
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_reciprocal(self):
 | |
|         a = mx.array([0.1, 0.5, 1.0, 2.0])
 | |
|         result = mx.reciprocal(a)
 | |
|         expected = np.reciprocal(a, dtype=np.float32)
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_logaddexp(self):
 | |
|         a = mx.array([0, 1, 2, 9.0])
 | |
|         b = mx.array([1, 0, 4, 2.5])
 | |
| 
 | |
|         result = mx.logaddexp(a, b)
 | |
|         expected = np.logaddexp(a, b, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|         # Complex test
 | |
| 
 | |
|         a = mx.array([0, 1, 2, 9.0]) + 1j
 | |
|         b = mx.array([1, 0, 4, 2.5]) + 1j
 | |
| 
 | |
|         result = mx.logaddexp(a, b)
 | |
|         expected = np_logaddexp(np.array(a), np.array(b))
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|         a = mx.array([float("nan")])
 | |
|         b = mx.array([0.0])
 | |
|         self.assertTrue(math.isnan(mx.logaddexp(a, b).item()))
 | |
| 
 | |
|     def test_log(self):
 | |
|         a = mx.array([1, 0.5, 10, 100])
 | |
|         result = mx.log(a)
 | |
|         expected = np.log(a, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|         a = mx.array(1.0) + 1j * mx.array(2.0)
 | |
|         result = mx.log(a)
 | |
|         expected = np.log(np.array(a))
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_log2(self):
 | |
|         a = mx.array([0.5, 1, 2, 10, 16])
 | |
|         result = mx.log2(a)
 | |
|         expected = np.log2(a, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|         a = mx.array(1.0) + 1j * mx.array(2.0)
 | |
|         result = mx.log2(a)
 | |
|         expected = np.log2(np.array(a))
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_log10(self):
 | |
|         a = mx.array([0.1, 1, 10, 20, 100])
 | |
|         result = mx.log10(a)
 | |
|         expected = np.log10(a, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|         a = mx.array(1.0) + 1j * mx.array(2.0)
 | |
|         result = mx.log10(a)
 | |
|         expected = np.log10(np.array(a))
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_exp(self):
 | |
|         a = mx.array([0, 0.5, -0.5, 5])
 | |
|         result = mx.exp(a)
 | |
|         expected = np.exp(a, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_expm1(self):
 | |
|         a = mx.array([-88, -87, 0, 0.5, -0.5, 5, 87, 88, 89, 90])
 | |
|         result = mx.expm1(a)
 | |
|         errs = np.seterr(over="ignore")
 | |
|         expected = np.expm1(a)
 | |
|         np.seterr(over=errs["over"])
 | |
|         self.assertTrue(np.allclose(result, expected, rtol=1e-3, atol=1e-4))
 | |
| 
 | |
|     def test_erf(self):
 | |
|         inputs = [-5, 0.0, 0.5, 1.0, 2.0, 10.0]
 | |
|         x = mx.array(inputs)
 | |
|         expected = np.array([math.erf(i) for i in inputs])
 | |
|         self.assertTrue(np.allclose(mx.erf(x), expected))
 | |
| 
 | |
|     def test_erfinv(self):
 | |
|         inputs = [-5.0, -1.0, 0.5, 0.0, 0.5, 1.0, 5.0]
 | |
|         x = mx.array(inputs)
 | |
|         # Output of:
 | |
|         # scipy.special.erfinv([-5.0, -1.0, 0.5, 0.0, 0.5, 1.0, 5.0])
 | |
|         expected = np.array(
 | |
|             [
 | |
|                 float("nan"),
 | |
|                 -float("inf"),
 | |
|                 0.47693628,
 | |
|                 0.0,
 | |
|                 0.47693628,
 | |
|                 float("inf"),
 | |
|                 float("nan"),
 | |
|             ]
 | |
|         ).astype(np.float32)
 | |
|         self.assertTrue(np.allclose(mx.erfinv(x), expected, equal_nan=True))
 | |
| 
 | |
|         result = mx.erfinv(mx.array([0.9999999403953552] * 8))
 | |
|         expected = mx.array([3.8325066566467285] * 8)
 | |
|         self.assertTrue(mx.allclose(result, expected))
 | |
| 
 | |
|     def test_sin(self):
 | |
|         a = mx.array(
 | |
|             [0, math.pi / 4, math.pi / 2, math.pi, 3 * math.pi / 4, 2 * math.pi]
 | |
|         )
 | |
|         result = mx.sin(a)
 | |
|         expected = np.sin(a, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_cos(self):
 | |
|         a = mx.array(
 | |
|             [0, math.pi / 4, math.pi / 2, math.pi, 3 * math.pi / 4, 2 * math.pi]
 | |
|         )
 | |
|         result = mx.cos(a)
 | |
|         expected = np.cos(a, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_degrees(self):
 | |
|         a = mx.array(
 | |
|             [0, math.pi / 4, math.pi / 2, math.pi, 3 * math.pi / 4, 2 * math.pi]
 | |
|         )
 | |
|         result = mx.degrees(a)
 | |
|         expected = np.degrees(a, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_radians(self):
 | |
|         a = mx.array([0.0, 45.0, 90.0, 180.0, 270.0, 360.0])
 | |
|         result = mx.radians(a)
 | |
|         expected = np.radians(a, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_log1p(self):
 | |
|         a = mx.array([1, 0.5, 10, 100])
 | |
|         result = mx.log1p(a)
 | |
|         expected = np.log1p(a, dtype=np.float32)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|         # Complex test
 | |
|         a = mx.array([1, 0.5, 10, 100]) + 1j
 | |
|         result = mx.log1p(a)
 | |
|         expected = np.log1p(a, dtype=np.complex64)
 | |
| 
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_sigmoid(self):
 | |
|         a = mx.array([0.0, 1.0, -1.0, 5.0, -5.0])
 | |
|         result = mx.sigmoid(a)
 | |
|         expected = 1 / (1 + np.exp(-a, dtype=np.float32))
 | |
|         self.assertTrue(np.allclose(result, expected))
 | |
| 
 | |
|     def test_allclose(self):
 | |
|         a = mx.array(1.0)
 | |
|         b = mx.array(1.0)
 | |
| 
 | |
|         self.assertTrue(mx.allclose(a, b).item())
 | |
| 
 | |
|         b = mx.array(1.1)
 | |
|         self.assertFalse(mx.allclose(a, b).item())
 | |
|         self.assertTrue(mx.allclose(a, b, 0.1).item())
 | |
|         self.assertFalse(mx.allclose(a, b, 0.01).item())
 | |
|         self.assertTrue(mx.allclose(a, b, 0.01, 0.1).item())
 | |
| 
 | |
|         c = mx.array(float("inf"))
 | |
|         self.assertTrue(mx.allclose(c, c).item())
 | |
| 
 | |
|     def test_isclose(self):
 | |
|         a = mx.array([float("inf"), float("inf"), float("-inf")])
 | |
|         b = mx.array([float("inf"), float("-inf"), float("-inf")])
 | |
| 
 | |
|         self.assertListEqual(mx.isclose(a, b).tolist(), [True, False, True])
 | |
| 
 | |
|         a = mx.array([np.nan])
 | |
|         self.assertListEqual(mx.isclose(a, a).tolist(), [False])
 | |
| 
 | |
|         a = mx.array([np.nan])
 | |
|         self.assertListEqual(mx.isclose(a, a, equal_nan=True).tolist(), [True])
 | |
| 
 | |
|     def test_all(self):
 | |
|         a = mx.array([[True, False], [True, True]])
 | |
| 
 | |
|         self.assertFalse(mx.all(a).item())
 | |
|         self.assertEqual(mx.all(a, keepdims=True).shape, (1, 1))
 | |
|         self.assertFalse(mx.all(a, axis=[0, 1]).item())
 | |
|         self.assertEqual(mx.all(a, axis=[0]).tolist(), [True, False])
 | |
|         self.assertEqual(mx.all(a, axis=[1]).tolist(), [False, True])
 | |
|         self.assertEqual(mx.all(a, axis=0).tolist(), [True, False])
 | |
|         self.assertEqual(mx.all(a, axis=1).tolist(), [False, True])
 | |
| 
 | |
|     def test_any(self):
 | |
|         a = mx.array([[True, False], [False, False]])
 | |
| 
 | |
|         self.assertTrue(mx.any(a).item())
 | |
|         self.assertEqual(mx.any(a, keepdims=True).shape, (1, 1))
 | |
|         self.assertTrue(mx.any(a, axis=[0, 1]).item())
 | |
|         self.assertEqual(mx.any(a, axis=[0]).tolist(), [True, False])
 | |
|         self.assertEqual(mx.any(a, axis=[1]).tolist(), [True, False])
 | |
|         self.assertEqual(mx.any(a, axis=0).tolist(), [True, False])
 | |
|         self.assertEqual(mx.any(a, axis=1).tolist(), [True, False])
 | |
| 
 | |
|     def test_stop_gradient(self):
 | |
|         def func(x):
 | |
|             return mx.sum(2 * x + mx.stop_gradient(3 * x))
 | |
| 
 | |
|         x = mx.array([0.0, 0.1, -3])
 | |
|         expected = [2, 2, 2]
 | |
| 
 | |
|         self.assertListEqual(mx.grad(func)(x).tolist(), expected)
 | |
| 
 | |
|     def test_kron(self):
 | |
|         # Basic vector test
 | |
|         x = mx.array([1, 2])
 | |
|         y = mx.array([3, 4])
 | |
|         z = mx.kron(x, y)
 | |
|         self.assertEqual(z.tolist(), [3, 4, 6, 8])
 | |
| 
 | |
|         # Basic matrix test
 | |
|         x = mx.array([[1, 2], [3, 4]])
 | |
|         y = mx.array([[0, 5], [6, 7]])
 | |
|         z = mx.kron(x, y)
 | |
|         self.assertEqual(
 | |
|             z.tolist(),
 | |
|             [[0, 5, 0, 10], [6, 7, 12, 14], [0, 15, 0, 20], [18, 21, 24, 28]],
 | |
|         )
 | |
| 
 | |
|         # Test with different dimensions
 | |
|         x = mx.array([1, 2])  # (2,)
 | |
|         y = mx.array([[3, 4], [5, 6]])  # (2, 2)
 | |
|         z = mx.kron(x, y)
 | |
|         self.assertEqual(z.tolist(), [[3, 4, 6, 8], [5, 6, 10, 12]])
 | |
| 
 | |
|         # Test with empty array
 | |
|         x = mx.array([])
 | |
|         y = mx.array([1, 2])
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.kron(x, y)
 | |
| 
 | |
|     def test_take(self):
 | |
|         # Shape: 4 x 3 x 2
 | |
|         l = [
 | |
|             [[1, 3], [-2, -2], [-3, -2]],
 | |
|             [[2, 4], [-3, 2], [-4, -2]],
 | |
|             [[2, 3], [2, 4], [2, 1]],
 | |
|             [[1, -5], [3, -1], [2, 3]],
 | |
|         ]
 | |
| 
 | |
|         a = mx.array(l)
 | |
|         a_npy = np.array(l)
 | |
| 
 | |
|         indices = [0, -1]
 | |
|         flatten_take = mx.take(a, mx.array(indices)).tolist()
 | |
|         flatten_take_expected = np.take(a_npy, np.array(indices)).tolist()
 | |
|         self.assertListEqual(flatten_take, flatten_take_expected)
 | |
| 
 | |
|         indices = [-1, 2, 0]
 | |
|         axis_take = mx.take(a, mx.array(indices), axis=0).tolist()
 | |
|         axis_take_expected = np.take(a_npy, np.array(indices), axis=0).tolist()
 | |
|         self.assertListEqual(axis_take, axis_take_expected)
 | |
| 
 | |
|         indices = [0, 0, -2]
 | |
|         axis_take = mx.take(a, mx.array(indices), axis=1).tolist()
 | |
|         axis_take_expected = np.take(a_npy, np.array(indices), axis=1).tolist()
 | |
|         self.assertListEqual(axis_take, axis_take_expected)
 | |
| 
 | |
|         indices = [0, -1, -1]
 | |
|         axis_take = mx.take(a, mx.array(indices), axis=-1).tolist()
 | |
|         axis_take_expected = np.take(a_npy, np.array(indices), axis=-1).tolist()
 | |
|         self.assertListEqual(axis_take, axis_take_expected)
 | |
| 
 | |
|         a_npy = np.arange(8 * 8 * 8, dtype=np.int32)
 | |
|         a_npy = a_npy.reshape((8, 8, 8))
 | |
|         idx_npy = np.arange(6, dtype=np.uint32)
 | |
|         idx_npy = idx_npy.reshape((2, 3))
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         idx_mlx = mx.array(idx_npy)
 | |
| 
 | |
|         a_npy_taken = np.take(a_npy, idx_npy)
 | |
|         a_mlx_taken = mx.take(a_mlx, idx_mlx)
 | |
|         self.assertEqual(a_npy_taken.shape, a_mlx_taken.shape)
 | |
|         self.assertListEqual(a_npy_taken.tolist(), a_mlx_taken.tolist())
 | |
| 
 | |
|         a_npy_taken = np.take(a_npy, idx_npy, axis=0)
 | |
|         a_mlx_taken = mx.take(a_mlx, idx_mlx, axis=0)
 | |
|         self.assertEqual(a_npy_taken.shape, a_mlx_taken.shape)
 | |
|         self.assertListEqual(a_npy_taken.tolist(), a_mlx_taken.tolist())
 | |
| 
 | |
|         a_npy_taken = np.take(a_npy, idx_npy, axis=1)
 | |
|         a_mlx_taken = mx.take(a_mlx, idx_mlx, axis=1)
 | |
|         self.assertEqual(a_npy_taken.shape, a_mlx_taken.shape)
 | |
|         self.assertListEqual(a_npy_taken.tolist(), a_mlx_taken.tolist())
 | |
| 
 | |
|         a_npy_taken = np.take(a_npy, idx_npy, axis=2)
 | |
|         a_mlx_taken = mx.take(a_mlx, idx_mlx, axis=2)
 | |
|         self.assertEqual(a_npy_taken.shape, a_mlx_taken.shape)
 | |
|         self.assertListEqual(a_npy_taken.tolist(), a_mlx_taken.tolist())
 | |
| 
 | |
|         # Take with integer index
 | |
|         a = mx.arange(8).reshape(2, 4)
 | |
|         out = mx.take(a, 1, axis=0)
 | |
|         self.assertTrue(mx.array_equal(out, mx.array([4, 5, 6, 7])))
 | |
|         out = mx.take(a, 1, axis=1)
 | |
|         self.assertTrue(mx.array_equal(out, mx.array([1, 5])))
 | |
| 
 | |
|         # Take with multi-dim scalar preserves dims
 | |
|         out = mx.take(a, mx.array(1), axis=0)
 | |
|         self.assertEqual(out.shape, (4,))
 | |
| 
 | |
|         out = mx.take(a, mx.array([1]), axis=0)
 | |
|         self.assertEqual(out.shape, (1, 4))
 | |
| 
 | |
|         out = mx.take(a, mx.array([[1]]), axis=0)
 | |
|         self.assertEqual(out.shape, (1, 1, 4))
 | |
| 
 | |
|     def test_take_along_axis(self):
 | |
|         a_np = np.arange(8).reshape(2, 2, 2)
 | |
|         a_mlx = mx.array(a_np)
 | |
|         idx_np = np.array([1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0])
 | |
|         idx_mlx = mx.array(idx_np)
 | |
| 
 | |
|         for ax in [None, 0, 1, 2]:
 | |
|             if ax == None:
 | |
|                 shape = [-1]
 | |
|             else:
 | |
|                 shape = [2] * 3
 | |
|                 shape[ax] = 3
 | |
|             out_np = np.take_along_axis(a_np, idx_np.reshape(shape), axis=ax)
 | |
|             out_mlx = mx.take_along_axis(a_mlx, mx.reshape(idx_mlx, shape), axis=ax)
 | |
|             self.assertTrue(np.array_equal(out_np, np.array(out_mlx)))
 | |
| 
 | |
|     def test_put_along_axis(self):
 | |
|         for ax in [None, 0, 1, 2]:
 | |
| 
 | |
|             a_np = np.arange(16).reshape(2, 2, 4).astype(np.int32)
 | |
|             a_mlx = mx.array(a_np)
 | |
| 
 | |
|             if ax == None:
 | |
|                 idx_np = np.random.permutation(a_np.size)
 | |
|                 values_np = np.random.randint(low=0, high=100, size=(16,))
 | |
|             else:
 | |
|                 shape = list(a_np.shape)
 | |
|                 shape[ax] = 2
 | |
|                 idx_np = np.random.choice(a_np.shape[ax], replace=False, size=(2,))
 | |
|                 idx_np = np.expand_dims(idx_np, list(range(1, 2 - ax + 1)))
 | |
|                 idx_np = np.broadcast_to(idx_np, shape)
 | |
|                 values_np = np.random.randint(low=0, high=100, size=shape)
 | |
| 
 | |
|             idx_np.astype(np.int32)
 | |
|             values_np.astype(a_np.dtype)
 | |
| 
 | |
|             idx_mlx = mx.array(idx_np)
 | |
|             values_mlx = mx.array(values_np)
 | |
| 
 | |
|             np.put_along_axis(a_np, idx_np, values_np, axis=ax)
 | |
|             out_mlx = mx.put_along_axis(a_mlx, idx_mlx, values_mlx, axis=ax)
 | |
|             self.assertTrue(np.array_equal(a_np, out_mlx))
 | |
| 
 | |
|         source = mx.zeros((1, 1, 8, 32))
 | |
|         indices = mx.array([0, 2, 4, 5]).reshape((1, 1, 4, 1))
 | |
|         update = mx.array(1.0)
 | |
| 
 | |
|         out_mlx = mx.put_along_axis(source, indices, update, axis=-2)
 | |
|         out_np = np.array(source)
 | |
|         np.put_along_axis(out_np, np.array(indices), np.array(update), axis=-2)
 | |
|         self.assertTrue(np.array_equal(out_np, np.array(out_mlx)))
 | |
| 
 | |
|         a = mx.array([], mx.float32)
 | |
|         b = mx.put_along_axis(a, a, a, axis=None)
 | |
|         mx.eval(b)
 | |
|         self.assertEqual(b.size, 0)
 | |
|         self.assertEqual(b.shape, a.shape)
 | |
| 
 | |
|     def test_split(self):
 | |
|         a = mx.array([1, 2, 3])
 | |
|         splits = mx.split(a, 3)
 | |
|         for e, x in enumerate(splits):
 | |
|             self.assertEqual(x.item(), e + 1)
 | |
| 
 | |
|         a = mx.array([[1, 2], [3, 4], [5, 6]])
 | |
|         x, y, z = mx.split(a, 3, axis=0)
 | |
|         self.assertEqual(x.tolist(), [[1, 2]])
 | |
|         self.assertEqual(y.tolist(), [[3, 4]])
 | |
|         self.assertEqual(z.tolist(), [[5, 6]])
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.split(a, 3, axis=2)
 | |
| 
 | |
|         a = mx.arange(8)
 | |
|         x, y, z = mx.split(a, [1, 5])
 | |
|         self.assertEqual(x.tolist(), [0])
 | |
|         self.assertEqual(y.tolist(), [1, 2, 3, 4])
 | |
|         self.assertEqual(z.tolist(), [5, 6, 7])
 | |
| 
 | |
|     def test_arange_overload_dispatch(self):
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.arange(float("nan"), 1, 5)
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.arange(0, float("nan"), 5)
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.arange(0, 2, float("nan"))
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.arange(0, float("inf"), float("inf"))
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.arange(float("inf"), 1, float("inf"))
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.arange(float("inf"), 1, 5)
 | |
|         with self.assertRaises(TypeError):
 | |
|             INT_MAX = 2147483647
 | |
|             a = mx.arange(0, INT_MAX + 1, 1)
 | |
| 
 | |
|         a = mx.arange(5)
 | |
|         expected = [0, 1, 2, 3, 4]
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
| 
 | |
|         a = mx.arange(1, 5)
 | |
|         expected = [1, 2, 3, 4]
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
| 
 | |
|         a = mx.arange(-3, step=-1)
 | |
|         expected = [0, -1, -2]
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
| 
 | |
|         a = mx.arange(stop=2, step=0.5)
 | |
|         expected = [0, 0.5, 1.0, 1.5]
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
| 
 | |
|         with self.assertRaises(TypeError):
 | |
|             mx.arange(start=1, step=2)
 | |
| 
 | |
|         a = mx.arange(stop=3)
 | |
|         expected = [0, 1, 2]
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
| 
 | |
|     def test_arange_inferred_dtype(self):
 | |
|         a = mx.arange(5)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
| 
 | |
|         a = mx.arange(5.0)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
| 
 | |
|         a = mx.arange(1, 3.0)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
| 
 | |
|         a = mx.arange(1, 3, dtype=mx.float32)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
| 
 | |
|         a = mx.arange(1, 5, 1)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
| 
 | |
|         a = mx.arange(1.0, 5, 1)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
| 
 | |
|         a = mx.arange(1, 5.0, 1)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
| 
 | |
|         a = mx.arange(1, 5, 1.0)
 | |
|         self.assertEqual(a.dtype, mx.float32)
 | |
| 
 | |
|         a = mx.arange(1.0, 3.0, 0.2, dtype=mx.int32)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
| 
 | |
|     def test_arange_corner_cases_cast(self):
 | |
|         a = mx.arange(0, 3, 0.2, dtype=mx.int32)
 | |
|         expected = [0] * 15
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
| 
 | |
|         a = mx.arange(-1, -4, -0.9, dtype=mx.int32)
 | |
|         expected = [-1] * 4
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
| 
 | |
|         a = mx.arange(-1, -20, -1.2, dtype=mx.int32)
 | |
|         expected = [
 | |
|             -1,
 | |
|             -2,
 | |
|             -3,
 | |
|             -4,
 | |
|             -5,
 | |
|             -6,
 | |
|             -7,
 | |
|             -8,
 | |
|             -9,
 | |
|             -10,
 | |
|             -11,
 | |
|             -12,
 | |
|             -13,
 | |
|             -14,
 | |
|             -15,
 | |
|             -16,
 | |
|         ]
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
| 
 | |
|         a = mx.arange(0, 10, 100)
 | |
|         expected = [0]
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
| 
 | |
|         a = mx.arange(10, 0, 1)
 | |
|         expected = []
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
| 
 | |
|         a = mx.arange(10, 0, float("inf"))
 | |
|         expected = []
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
| 
 | |
|         a = mx.arange(0, 10, float("inf"))
 | |
|         expected = [0]
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
| 
 | |
|         a = mx.arange(0, -10, float("-inf"))
 | |
|         expected = [0]
 | |
|         self.assertListEqual(a.tolist(), expected)
 | |
| 
 | |
|     def test_unary_ops(self):
 | |
|         def test_ops(npop, mlxop, x, y, atol):
 | |
|             r_np = npop(x)
 | |
|             r_mlx = mlxop(y)
 | |
|             mx.eval(r_mlx)
 | |
| 
 | |
|             self.assertTrue(np.allclose(r_np, r_mlx, atol=atol))
 | |
| 
 | |
|         x = np.random.rand(18, 28, 38)
 | |
|         for op in ["abs", "exp", "log", "square", "sqrt"]:
 | |
|             with self.subTest(op=op):
 | |
|                 float_dtypes = [("float16", 1e-3), ("float32", 1e-6)]
 | |
| 
 | |
|                 for dtype, atol in float_dtypes:
 | |
|                     with self.subTest(dtype=dtype):
 | |
|                         x_ = x.astype(getattr(np, dtype))
 | |
|                         y_ = mx.array(x_)
 | |
|                         test_ops(getattr(np, op), getattr(mx, op), x_, y_, atol)
 | |
| 
 | |
|     def test_unary_ops_from_non_array(self):
 | |
|         unary_ops = [
 | |
|             "abs",
 | |
|             "exp",
 | |
|             "log",
 | |
|             "square",
 | |
|             "sqrt",
 | |
|             "sin",
 | |
|             "cos",
 | |
|             "tan",
 | |
|             "sinh",
 | |
|             "cosh",
 | |
|             "tanh",
 | |
|             "sign",
 | |
|             "negative",
 | |
|             "expm1",
 | |
|             "arcsin",
 | |
|             "arccos",
 | |
|             "arctan",
 | |
|             "arcsinh",
 | |
|             "arctanh",
 | |
|             "degrees",
 | |
|             "radians",
 | |
|             "log2",
 | |
|             "log10",
 | |
|             "log1p",
 | |
|             "floor",
 | |
|             "ceil",
 | |
|             "conjugate",
 | |
|         ]
 | |
| 
 | |
|         x = 0.5
 | |
|         x_np = np.random.rand(10).astype(np.float32)
 | |
|         for op in unary_ops:
 | |
|             with self.subTest(op=op):
 | |
|                 # Test from scalar
 | |
|                 expected = getattr(np, op)(x)
 | |
|                 out = getattr(mx, op)(x)
 | |
| 
 | |
|                 # Check close
 | |
|                 self.assertTrue(np.allclose(expected, out, equal_nan=True))
 | |
| 
 | |
|                 # Test from NumPy
 | |
|                 expected = getattr(np, op)(x_np)
 | |
|                 out = getattr(mx, op)(x_np)
 | |
| 
 | |
|                 # Check close
 | |
|                 self.assertTrue(np.allclose(expected, np.array(out), equal_nan=True))
 | |
| 
 | |
|     def test_trig_ops(self):
 | |
|         def test_ops(npop, mlxop, x, y, atol):
 | |
|             r_np = npop(x)
 | |
|             r_mlx = mlxop(y)
 | |
|             mx.eval(r_mlx)
 | |
| 
 | |
|             self.assertTrue(np.allclose(r_np, r_mlx, atol=atol, equal_nan=True))
 | |
| 
 | |
|         x = np.random.rand(9, 12, 18)
 | |
|         xi = np.random.rand(9, 12, 18)
 | |
|         base_ops = ["sin", "cos", "tan"]
 | |
|         hyperbolic_ops = ["sinh", "cosh", "tanh"]
 | |
|         all_fwd_ops = base_ops + hyperbolic_ops
 | |
| 
 | |
|         for op in all_fwd_ops:
 | |
|             with self.subTest(op=op):
 | |
|                 float_dtypes = [("float16", 1e-3), ("float32", 1e-6)]
 | |
| 
 | |
|                 for dtype, atol in float_dtypes:
 | |
|                     with self.subTest(dtype=dtype):
 | |
|                         x_ = x.astype(getattr(np, dtype))
 | |
|                         y_ = mx.array(x_)
 | |
|                         test_ops(getattr(np, op), getattr(mx, op), x_, y_, atol)
 | |
| 
 | |
|             with self.subTest(op=op):
 | |
|                 float_dtypes = [("complex64", 1e-5)]
 | |
| 
 | |
|                 for dtype, atol in float_dtypes:
 | |
|                     with self.subTest(dtype=dtype):
 | |
|                         x_ = x + 1.0j * xi
 | |
|                         x_ = x_.astype(getattr(np, dtype))
 | |
|                         y_ = mx.array(x_)
 | |
|                         test_ops(getattr(np, op), getattr(mx, op), x_, y_, atol)
 | |
| 
 | |
|             with self.subTest(op="arc" + op):
 | |
|                 float_dtypes = [("float16", 1e-3), ("float32", 1e-6)]
 | |
|                 op_inv = "arc" + op
 | |
| 
 | |
|                 for dtype, atol in float_dtypes:
 | |
|                     with self.subTest(dtype=dtype):
 | |
|                         np_op_fwd = getattr(np, op)
 | |
|                         x_ = np_op_fwd(x).astype(getattr(np, dtype))
 | |
|                         y_ = mx.array(x_)
 | |
|                         test_ops(getattr(np, op_inv), getattr(mx, op_inv), x_, y_, atol)
 | |
| 
 | |
|         # Test grads
 | |
|         np_vjp_funcs = {
 | |
|             "sin": lambda primal, cotan: cotan * np.cos(primal),
 | |
|             "cos": lambda primal, cotan: -cotan * np.sin(primal),
 | |
|             "tan": lambda primal, cotan: cotan / (np.cos(primal) ** 2),
 | |
|             "sinh": lambda primal, cotan: cotan * np.cosh(primal),
 | |
|             "cosh": lambda primal, cotan: cotan * np.sinh(primal),
 | |
|             "tanh": lambda primal, cotan: cotan / (np.cosh(primal) ** 2),
 | |
|             "arcsin": lambda primal, cotan: cotan / np.sqrt(1.0 - primal**2),
 | |
|             "arccos": lambda primal, cotan: -cotan / np.sqrt(1.0 - primal**2),
 | |
|             "arctan": lambda primal, cotan: cotan / (1.0 + primal**2),
 | |
|             "arctan2": lambda primal, cotan: cotan / (1.0 + primal**2),
 | |
|             "arcsinh": lambda primal, cotan: cotan / np.sqrt(primal**2 + 1),
 | |
|             "arccosh": lambda primal, cotan: cotan / np.sqrt(primal**2 - 1),
 | |
|             "arctanh": lambda primal, cotan: cotan / (1.0 - primal**2),
 | |
|         }
 | |
|         with self.subTest(name="grads"):
 | |
|             for op in all_fwd_ops:
 | |
|                 with self.subTest(op=op):
 | |
|                     primal_np = xi.astype(np.float32)
 | |
|                     primal_mx = mx.array(primal_np)
 | |
|                     x_ = x.astype(np.float32)
 | |
|                     y_ = mx.array(x_)
 | |
|                     op_ = op
 | |
|                     atol_ = 1e-5
 | |
| 
 | |
|                     np_vjp = lambda x: np_vjp_funcs[op_](primal_np, x)
 | |
|                     mx_vjp = lambda x: mx.vjp(getattr(mx, op_), [primal_mx], [x])[1][0]
 | |
|                     test_ops(np_vjp, mx_vjp, x_, y_, atol_)
 | |
| 
 | |
|                 with self.subTest(op="arc" + op):
 | |
|                     np_op_fwd = getattr(np, op)
 | |
|                     primal_np = np_op_fwd(xi).astype(np.float32)
 | |
| 
 | |
|                     # To avoid divide by zero error
 | |
|                     if op == "cosh":
 | |
|                         primal_np[np.isclose(primal_np, 1.0)] += 1e-3
 | |
|                     elif op == "cos":
 | |
|                         primal_np[np.isclose(primal_np, 1.0)] -= 1e-3
 | |
| 
 | |
|                     primal_mx = mx.array(primal_np)
 | |
|                     x_ = x.astype(np.float32)
 | |
|                     y_ = mx.array(x_)
 | |
|                     op_ = "arc" + op
 | |
|                     atol_ = 1e-5
 | |
| 
 | |
|                     np_vjp = lambda x: np_vjp_funcs[op_](primal_np, x)
 | |
|                     mx_vjp = lambda x: mx.vjp(getattr(mx, op_), [primal_mx], [x])[1][0]
 | |
|                     test_ops(np_vjp, mx_vjp, x_, y_, atol_)
 | |
| 
 | |
|     def test_binary_ops(self):
 | |
|         def test_ops(npop, mlxop, x1, x2, y1, y2, atol):
 | |
|             r_np = npop(x1, x2)
 | |
|             r_mlx = mlxop(y1, y2)
 | |
|             mx.eval(r_mlx)
 | |
|             self.assertTrue(np.allclose(r_np, r_mlx, atol=atol))
 | |
| 
 | |
|             r_np = npop(x1[:1], x2)
 | |
|             r_mlx = mlxop(y1[:1], y2)
 | |
|             mx.eval(r_mlx)
 | |
|             self.assertTrue(np.allclose(r_np, r_mlx, atol=atol))
 | |
| 
 | |
|             r_np = npop(x1[:, :1], x2)
 | |
|             r_mlx = mlxop(y1[:, :1], y2)
 | |
|             mx.eval(r_mlx)
 | |
|             self.assertTrue(np.allclose(r_np, r_mlx, atol=atol))
 | |
| 
 | |
|             r_np = npop(x1[:, :, :1], x2)
 | |
|             r_mlx = mlxop(y1[:, :, :1], y2)
 | |
|             mx.eval(r_mlx)
 | |
|             self.assertTrue(np.allclose(r_np, r_mlx, atol=atol))
 | |
| 
 | |
|         x1 = np.maximum(np.random.rand(18, 28, 38), 0.1)
 | |
|         x2 = np.maximum(np.random.rand(18, 28, 38), 0.1)
 | |
|         y1 = mx.array(x1)
 | |
|         y2 = mx.array(x2)
 | |
|         mx.eval(y1, y2)
 | |
|         for op in [
 | |
|             "add",
 | |
|             "subtract",
 | |
|             "multiply",
 | |
|             "divide",
 | |
|             "floor_divide",
 | |
|             "maximum",
 | |
|             "minimum",
 | |
|             "power",
 | |
|         ]:
 | |
|             with self.subTest(op=op):
 | |
|                 int_dtypes = [
 | |
|                     "int8",
 | |
|                     "int16",
 | |
|                     "int32",
 | |
|                     "int64",
 | |
|                     "uint8",
 | |
|                     "uint16",
 | |
|                     "uint32",
 | |
|                     "uint64",
 | |
|                 ]
 | |
|                 float_dtypes = ["float16", "float32"]
 | |
| 
 | |
|                 dtypes = {
 | |
|                     "divide": float_dtypes,
 | |
|                     "power": float_dtypes,
 | |
|                     "floor_divide": ["float32"] + int_dtypes,
 | |
|                 }
 | |
|                 dtypes = dtypes.get(op, int_dtypes + float_dtypes)
 | |
| 
 | |
|                 for dtype in dtypes:
 | |
|                     atol = 1e-3 if dtype == "float16" else 1e-6
 | |
|                     with self.subTest(dtype=dtype):
 | |
|                         m = 10 if dtype in int_dtypes else 1
 | |
|                         x1_ = (x1 * m).astype(getattr(np, dtype))
 | |
|                         x2_ = (x2 * m).astype(getattr(np, dtype))
 | |
|                         y1_ = mx.array(x1_)
 | |
|                         y2_ = mx.array(x2_)
 | |
|                         test_ops(
 | |
|                             getattr(np, op), getattr(mx, op), x1_, x2_, y1_, y2_, atol
 | |
|                         )
 | |
| 
 | |
|     def test_irregular_binary_ops(self):
 | |
|         # Check transposed binary ops
 | |
|         dims = [2, 3, 4, 5]
 | |
|         size = 3
 | |
|         trial_mul = 2
 | |
|         np.random.seed(0)
 | |
|         for d in dims:
 | |
|             anp = np.random.randint(-20, 20, (size**d,)).reshape([size] * d)
 | |
|             bnp = np.random.randint(-20, 20, (size**d,)).reshape([size] * d)
 | |
|             for _ in range(trial_mul * d):
 | |
|                 amlx = mx.array(anp)
 | |
|                 bmlx = mx.array(bnp)
 | |
|                 a_t = np.random.permutation(d).tolist()
 | |
|                 b_t = np.random.permutation(d).tolist()
 | |
|                 outnp = np.add(anp.transpose(a_t), bnp.transpose(b_t))
 | |
|                 outmlx = mx.add(mx.transpose(amlx, a_t), mx.transpose(bmlx, b_t))
 | |
|                 self.assertTrue(np.array_equal(outnp, outmlx))
 | |
| 
 | |
|         # Check broadcast binary ops
 | |
|         for d in dims:
 | |
|             anp = np.random.randint(-20, 20, (size**d,)).reshape([size] * d)
 | |
|             for n_bsx in range(d):
 | |
|                 bnp = np.random.randint(-20, 20, (size**n_bsx,)).reshape([size] * n_bsx)
 | |
|                 for _ in range(trial_mul * d):
 | |
|                     amlx = mx.array(anp)
 | |
|                     bmlx = mx.array(bnp)
 | |
|                     b_shape = [1] * (d - n_bsx) + [size] * n_bsx
 | |
|                     np.random.shuffle(b_shape)
 | |
|                     outnp = np.add(anp, bnp.reshape(b_shape))
 | |
|                     outmlx = mx.add(amlx, mx.reshape(bmlx, b_shape))
 | |
|                     self.assertTrue(np.array_equal(outnp, outmlx))
 | |
| 
 | |
|         # Check strided binary ops
 | |
|         for d in dims:
 | |
|             a = np.random.randint(-20, 20, (10,) * d)
 | |
|             b = np.random.randint(-20, 20, (10,) * d)
 | |
|             a_ = mx.array(a)
 | |
|             b_ = mx.array(b)
 | |
|             for t in permutations(range(d)):
 | |
|                 for s in range(d):
 | |
|                     idx = tuple(
 | |
|                         [slice(None)] * s
 | |
|                         + [slice(None, None, 2)]
 | |
|                         + [slice(None)] * (d - s - 1)
 | |
|                     )
 | |
|                     c = a.transpose(t)[idx] + b[idx]
 | |
|                     c_ = mx.transpose(a_, t)[idx] + b_[idx]
 | |
|                     self.assertTrue(np.array_equal(c, c_))
 | |
| 
 | |
|     def test_softmax(self):
 | |
|         cases = [(np.float32, 1e-6), (np.float16, 1e-3)]
 | |
| 
 | |
|         for dtype, atol in cases:
 | |
|             a_npy = np.random.randn(16, 8, 32).astype(dtype)
 | |
|             a_mlx = mx.array(a_npy)
 | |
| 
 | |
|             def np_softmax(x, axis):
 | |
|                 ex = np.exp(x - np.max(x, axis=axis, keepdims=True))
 | |
|                 return ex / np.sum(ex, axis=axis, keepdims=True)
 | |
| 
 | |
|             for axes in (None, 0, 1, 2, (0, 1), (1, 2), (0, 2), (0, 1, 2)):
 | |
|                 b_npy = np_softmax(a_npy, axes)
 | |
|                 b_mlx = mx.softmax(a_mlx, axes)
 | |
|                 self.assertTrue(np.allclose(b_npy, b_mlx, atol=atol))
 | |
| 
 | |
|         for s in [100, 2049, 4097, 8193]:
 | |
|             a = np.full(s, -np.inf)
 | |
|             a[-1] = 0.0
 | |
|             a = mx.softmax(mx.array(a))
 | |
|             self.assertFalse(np.any(np.isnan(a)))
 | |
|             self.assertTrue((a[:-1] < 1e-9).all())
 | |
|             self.assertEqual(a[-1], 1)
 | |
| 
 | |
|         # Sliced inputs
 | |
|         y = mx.random.uniform(shape=(8, 4))
 | |
|         out = mx.softmax(y[:, 0:2], axis=-1)
 | |
|         self.assertAlmostEqual(out.sum().item(), 8.0, 5)
 | |
| 
 | |
|         # Precise
 | |
|         for t in [mx.float16, mx.bfloat16]:
 | |
|             a = (10 * mx.random.normal(shape=(1024,))).astype(t)
 | |
|             out_expect = mx.softmax(a.astype(mx.float32)).astype(t)
 | |
|             out = mx.softmax(a, axis=-1, precise=True)
 | |
|             self.assertTrue(mx.allclose(out_expect, out))
 | |
| 
 | |
|         # All Infs give NaNs
 | |
|         for n in [127, 128, 129]:
 | |
|             x = mx.full((n,), vals=-float("inf"))
 | |
|             self.assertTrue(mx.all(mx.isnan(mx.softmax(x))))
 | |
| 
 | |
|         # Transposed inputs
 | |
|         a = mx.random.uniform(shape=(32, 32, 32))
 | |
|         b = mx.softmax(a, axis=-1)
 | |
|         c = mx.softmax(a.swapaxes(0, 1), axis=-1).swapaxes(0, 1)
 | |
|         self.assertEqual((b - c).abs().max().item(), 0.0)
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.softmax(mx.array(1.0), axis=-1)
 | |
| 
 | |
|     def test_concatenate(self):
 | |
|         a_npy = np.random.randn(32, 32, 32)
 | |
|         b_npy = np.random.randn(32, 32, 32)
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         b_mlx = mx.array(b_npy)
 | |
| 
 | |
|         for axis in (None, 0, 1, 2):
 | |
|             for p in permutations([0, 1, 2]):
 | |
|                 c_npy = np.concatenate([a_npy, np.transpose(b_npy, p)], axis=axis)
 | |
|                 c_mlx = mx.concatenate([a_mlx, mx.transpose(b_mlx, p)], axis=axis)
 | |
|                 self.assertEqual(list(c_npy.shape), list(c_mlx.shape))
 | |
|                 self.assertTrue(np.allclose(c_npy, c_mlx, atol=1e-6))
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             a = mx.array([[1, 2], [1, 2], [1, 2]])
 | |
|             b = mx.array([1, 2])
 | |
|             mx.concatenate([a, b], axis=0)
 | |
| 
 | |
|         # Cocnatenate with 0-sized array
 | |
|         a = mx.zeros((2, 0, 2))
 | |
|         b = mx.zeros((2, 2, 2))
 | |
|         out = mx.concatenate([a, b], axis=1)
 | |
|         self.assertTrue(mx.array_equal(out, b))
 | |
| 
 | |
|     def test_meshgrid(self):
 | |
|         x = mx.array([1, 2, 3], dtype=mx.int32)
 | |
|         y = np.array([1, 2, 3], dtype=np.int32)
 | |
| 
 | |
|         # Test single input
 | |
|         a_mlx = mx.meshgrid(x)
 | |
|         a_np = np.meshgrid(y)
 | |
|         self.assertEqualArray(a_mlx[0], mx.array(a_np[0]))
 | |
| 
 | |
|         # Test sparse
 | |
|         a_mlx, b_mlx, c_mlx = mx.meshgrid(x, x, x, sparse=True)
 | |
|         a_np, b_np, c_np = np.meshgrid(y, y, y, sparse=True)
 | |
|         self.assertEqualArray(a_mlx, mx.array(a_np))
 | |
|         self.assertEqualArray(b_mlx, mx.array(b_np))
 | |
|         self.assertEqualArray(c_mlx, mx.array(c_np))
 | |
| 
 | |
|         # Test different lengths
 | |
|         x = mx.array([1, 2], dtype=mx.int32)
 | |
|         y = mx.array([1, 2, 3], dtype=mx.int32)
 | |
|         z = np.array([1, 2], dtype=np.int32)
 | |
|         w = np.array([1, 2, 3], dtype=np.int32)
 | |
|         a_mlx, b_mlx = mx.meshgrid(x, y)
 | |
|         a_np, b_np = np.meshgrid(z, w)
 | |
|         self.assertEqualArray(a_mlx, mx.array(a_np))
 | |
|         self.assertEqualArray(b_mlx, mx.array(b_np))
 | |
| 
 | |
|         # Test empty input
 | |
|         x = mx.array([], dtype=mx.int32)
 | |
|         y = np.array([], dtype=np.int32)
 | |
|         a_mlx = mx.meshgrid(x)
 | |
|         a_np = np.meshgrid(y)
 | |
|         self.assertEqualArray(a_mlx[0], mx.array(a_np[0]))
 | |
| 
 | |
|         # Test float32 input
 | |
|         x = mx.array([1.1, 2.2, 3.3], dtype=mx.float32)
 | |
|         y = np.array([1.1, 2.2, 3.3], dtype=np.float32)
 | |
|         a_mlx = mx.meshgrid(x, x, x)
 | |
|         a_np = np.meshgrid(y, y, y)
 | |
|         self.assertEqualArray(a_mlx[0], mx.array(a_np[0]))
 | |
|         self.assertEqualArray(a_mlx[1], mx.array(a_np[1]))
 | |
|         self.assertEqualArray(a_mlx[2], mx.array(a_np[2]))
 | |
| 
 | |
|         # Test ij indexing
 | |
|         x = mx.array([1.1, 2.2, 3.3, 4.4, 5.5], dtype=mx.float32)
 | |
|         y = np.array([1.1, 2.2, 3.3, 4.4, 5.5], dtype=np.float32)
 | |
|         a_mlx = mx.meshgrid(x, x, indexing="ij")
 | |
|         a_np = np.meshgrid(y, y, indexing="ij")
 | |
|         self.assertEqualArray(a_mlx[0], mx.array(a_np[0]))
 | |
|         self.assertEqualArray(a_mlx[1], mx.array(a_np[1]))
 | |
| 
 | |
|         # Test different lengths, sparse, and ij indexing
 | |
|         a = mx.array([1, 2], dtype=mx.int64)
 | |
|         b = mx.array([1, 2, 3], dtype=mx.int64)
 | |
|         c = mx.array([1, 2, 3, 4], dtype=mx.int64)
 | |
|         x = np.array([1, 2], dtype=np.int64)
 | |
|         y = np.array([1, 2, 3], dtype=np.int64)
 | |
|         z = np.array([1, 2, 3, 4], dtype=np.int64)
 | |
|         a_mlx, b_mlx, c_mlx = mx.meshgrid(a, b, c, sparse=True, indexing="ij")
 | |
|         a_np, b_np, c_np = np.meshgrid(x, y, z, sparse=True, indexing="ij")
 | |
|         self.assertEqualArray(a_mlx, mx.array(a_np))
 | |
|         self.assertEqualArray(b_mlx, mx.array(b_np))
 | |
|         self.assertEqualArray(c_mlx, mx.array(c_np))
 | |
| 
 | |
|     def test_pad(self):
 | |
|         pad_width_and_values = [
 | |
|             ([(1, 1), (1, 1), (1, 1)], 0),
 | |
|             ([(1, 1), (1, 1), (1, 1)], 5),
 | |
|             ([(3, 0), (0, 2), (5, 7)], 0),
 | |
|             ([(3, 0), (0, 2), (5, 7)], -7),
 | |
|             ([(0, 0), (0, 0), (0, 0)], 0),
 | |
|         ]
 | |
| 
 | |
|         for pw, v in pad_width_and_values:
 | |
|             with self.subTest(pad_width=pw, value=v):
 | |
|                 a_npy = np.random.randn(16, 16, 16).astype(np.float32)
 | |
|                 a_mlx = mx.array(a_npy)
 | |
| 
 | |
|                 b_npy = np.pad(a_npy, pw, constant_values=v)
 | |
|                 b_mlx = mx.pad(a_mlx, pw, constant_values=v)
 | |
| 
 | |
|                 self.assertEqual(list(b_npy.shape), list(b_mlx.shape))
 | |
|                 self.assertTrue(np.allclose(b_npy, b_mlx, atol=1e-6))
 | |
| 
 | |
|                 b_npy = np.pad(a_npy, pw, mode="edge")
 | |
|                 b_mlx = mx.pad(a_mlx, pw, mode="edge")
 | |
| 
 | |
|                 self.assertEqual(list(b_npy.shape), list(b_mlx.shape))
 | |
|                 self.assertTrue(np.allclose(b_npy, b_mlx, atol=1e-6))
 | |
| 
 | |
|         a = mx.zeros((1, 1, 1))
 | |
|         self.assertEqual(mx.pad(a, 1).shape, (3, 3, 3))
 | |
|         self.assertEqual(mx.pad(a, (1,)).shape, (3, 3, 3))
 | |
|         self.assertEqual(mx.pad(a, [1]).shape, (3, 3, 3))
 | |
|         self.assertEqual(mx.pad(a, (1, 2)).shape, (4, 4, 4))
 | |
|         self.assertEqual(mx.pad(a, [(1, 2)]).shape, (4, 4, 4))
 | |
|         self.assertEqual(mx.pad(a, ((1, 2),)).shape, (4, 4, 4))
 | |
|         self.assertEqual(mx.pad(a, ((1, 2), (2, 1), (2, 2))).shape, (4, 4, 5))
 | |
| 
 | |
|         # Test grads
 | |
|         a_fwd = mx.array(np.random.rand(16, 16).astype(np.float32))
 | |
|         a_bwd = mx.ones((22, 22))
 | |
|         f = lambda x: mx.pad(x, ((4, 2), (2, 4)))
 | |
| 
 | |
|         _, df = mx.vjp(f, [a_fwd], [a_bwd])
 | |
|         self.assertTrue(mx.allclose(a_bwd[4:-2, 2:-4], df[0]).item())
 | |
| 
 | |
|     def test_where(self):
 | |
|         self.assertCmpNumpy([True, mx.array([[1, 2], [3, 4]]), 1], mx.where, np.where)
 | |
|         self.assertCmpNumpy([True, 1, mx.array([[1, 2], [3, 4]])], mx.where, np.where)
 | |
|         self.assertCmpNumpy(
 | |
|             [
 | |
|                 mx.array([[True, False], [False, True]]),
 | |
|                 mx.array([[1, 2], [3, 4]]),
 | |
|                 mx.array([5, 6]),
 | |
|             ],
 | |
|             mx.where,
 | |
|             np.where,
 | |
|         )
 | |
| 
 | |
|         # Check non-contiguous input with several dimensions
 | |
|         shape = [1, 2, 2, 3, 3, 1]
 | |
|         strides = [16, 4, 1, 4, 1, 1]
 | |
|         x = mx.ones(shape=(1, 4, 4, 1))
 | |
|         x = mx.as_strided(x, shape, strides)
 | |
|         out = mx.where(mx.isnan(x), mx.nan, x)
 | |
|         self.assertTrue(mx.allclose(out, mx.ones_like(out)))
 | |
| 
 | |
|     def test_nan_to_num(self):
 | |
|         a = mx.array([6, float("inf"), 2, 0])
 | |
|         out_mx = mx.nan_to_num(a)
 | |
|         out_np = np.nan_to_num(a)
 | |
|         self.assertTrue(np.allclose(out_mx, out_np))
 | |
| 
 | |
|         for t in [mx.float32, mx.float16]:
 | |
|             a = mx.array([float("inf"), 6.9, float("nan"), float("-inf")])
 | |
|             out_mx = mx.nan_to_num(a)
 | |
|             out_np = np.nan_to_num(a)
 | |
|             self.assertTrue(np.allclose(out_mx, out_np))
 | |
| 
 | |
|             a = mx.array([float("inf"), 6.9, float("nan"), float("-inf")]).astype(t)
 | |
|             out_np = np.nan_to_num(a, nan=0.0, posinf=1000, neginf=-1000)
 | |
|             out_mx = mx.nan_to_num(a, nan=0.0, posinf=1000, neginf=-1000)
 | |
|             self.assertTrue(np.allclose(out_mx, out_np))
 | |
| 
 | |
|     def test_as_strided(self):
 | |
|         x_npy = np.random.randn(128).astype(np.float32)
 | |
|         x_mlx = mx.array(x_npy)
 | |
| 
 | |
|         shapes = [(10, 10), (5, 5), (2, 20), (10,)]
 | |
|         strides = [(3, 3), (7, 1), (1, 5), (4,)]
 | |
|         for shape, stride in zip(shapes, strides):
 | |
|             for offset in [0, 1, 3]:
 | |
|                 y_npy = np.lib.stride_tricks.as_strided(
 | |
|                     x_npy[offset:], shape, np.multiply(stride, 4)
 | |
|                 )
 | |
|                 y_mlx = mx.as_strided(x_mlx, shape, stride, offset)
 | |
|                 self.assertTrue(np.array_equal(y_npy, y_mlx))
 | |
| 
 | |
|         x = mx.random.uniform(shape=(32,))
 | |
|         y = mx.as_strided(x, (x.size,), (-1,), x.size - 1)
 | |
|         self.assertTrue(mx.array_equal(y, x[::-1]))
 | |
| 
 | |
|     def test_logcumsumexp(self):
 | |
|         npop = np.logaddexp.accumulate
 | |
|         mxop = mx.logcumsumexp
 | |
| 
 | |
|         a_npy = np.random.randn(32, 32, 32).astype(np.float32)
 | |
|         a_mlx = mx.array(a_npy)
 | |
| 
 | |
|         for axis in (0, 1, 2):
 | |
|             c_npy = npop(a_npy, axis=axis)
 | |
|             c_mlx = mxop(a_mlx, axis=axis)
 | |
|             self.assertTrue(np.allclose(c_npy, c_mlx, rtol=1e-3, atol=1e-3))
 | |
| 
 | |
|         edge_cases_npy = [
 | |
|             np.float32([-float("inf")] * 8),
 | |
|             np.float32([-float("inf"), 0, -float("inf")]),
 | |
|             np.float32([-float("inf"), float("inf"), -float("inf")]),
 | |
|         ]
 | |
|         edge_cases_mlx = [mx.array(a) for a in edge_cases_npy]
 | |
| 
 | |
|         for a_npy, a_mlx in zip(edge_cases_npy, edge_cases_mlx):
 | |
|             c_npy = npop(a_npy, axis=0)
 | |
|             c_mlx = mxop(a_mlx, axis=0)
 | |
|             self.assertTrue(np.allclose(c_npy, c_mlx, rtol=1e-3, atol=1e-3))
 | |
| 
 | |
|         # Complex tests
 | |
| 
 | |
|         a_npy = np.array([1, 2, 3]).astype(np.float32) + 1j
 | |
|         a_mlx = mx.array(a_npy)
 | |
|         c_npy = np_cumlogaddexp(a_npy, axis=-1)
 | |
|         c_mlx = mxop(a_mlx, axis=-1)
 | |
|         self.assertTrue(np.allclose(c_npy, c_mlx, rtol=1e-3, atol=1e-3))
 | |
| 
 | |
|     def test_scans(self):
 | |
|         a_npy = np.random.randn(32, 32, 32).astype(np.float32)
 | |
|         a_mlx = mx.array(a_npy)
 | |
| 
 | |
|         for op in ["cumsum", "cumprod"]:
 | |
|             npop = getattr(np, op)
 | |
|             mxop = getattr(mx, op)
 | |
|             for axis in (None, 0, 1, 2):
 | |
|                 c_npy = npop(a_npy, axis=axis)
 | |
|                 c_mlx = mxop(a_mlx, axis=axis)
 | |
|                 self.assertTrue(np.allclose(c_npy, c_mlx, rtol=1e-3, atol=1e-3))
 | |
| 
 | |
|         # Complex test
 | |
| 
 | |
|         a_npy = np.random.randn(32, 32, 32).astype(np.float32) + 0.5j
 | |
|         a_mlx = mx.array(a_npy)
 | |
| 
 | |
|         for op in ["cumsum", "cumprod"]:
 | |
|             npop = getattr(np, op)
 | |
|             mxop = getattr(mx, op)
 | |
|             for axis in (None, 0, 1, 2):
 | |
|                 c_npy = npop(a_npy, axis=axis)
 | |
|                 c_mlx = mxop(a_mlx, axis=axis)
 | |
|                 self.assertTrue(np.allclose(c_npy, c_mlx, rtol=1e-3, atol=1e-3))
 | |
| 
 | |
|         a_mlx = mx.random.randint(shape=(32, 32, 32), low=-100, high=100)
 | |
|         for dt in [mx.int32, mx.int64]:
 | |
|             mxx = a_mlx.astype(dt)
 | |
|             npx = np.array(mxx)
 | |
|             for op in ["cumsum", "cumprod"]:
 | |
|                 npop = getattr(np, op)
 | |
|                 mxop = getattr(mx, op)
 | |
|                 for axis in (None, 0, 1, 2):
 | |
|                     c_npy = npop(npx, axis=axis, dtype=npx.dtype)
 | |
|                     c_mlx = mxop(mxx, axis=axis)
 | |
|                     self.assertTrue(np.array_equal(c_npy, c_mlx))
 | |
| 
 | |
|         a_mlx = mx.random.randint(shape=(32, 32, 32), low=-100, high=100)
 | |
|         for op in ["cumsum", "cumprod", "cummax", "cummin"]:
 | |
|             mxop = getattr(mx, op)
 | |
|             c1 = mxop(a_mlx, axis=2)
 | |
|             c2 = mxop(a_mlx, axis=2, inclusive=False, reverse=False)
 | |
|             self.assertTrue(mx.array_equal(c1[:, :, :-1], c2[:, :, 1:]))
 | |
|             c1 = mxop(a_mlx, axis=1)
 | |
|             c2 = mxop(a_mlx, axis=1, inclusive=False, reverse=False)
 | |
|             self.assertTrue(mx.array_equal(c1[:, :-1, :], c2[:, 1:, :]))
 | |
|             c1 = mxop(a_mlx, axis=0)
 | |
|             c2 = mxop(a_mlx, axis=0, inclusive=False, reverse=False)
 | |
|             self.assertTrue(mx.array_equal(c1[:-1, :, :], c2[1:, :, :]))
 | |
| 
 | |
|             rev_idx = mx.arange(31, -1, -1)
 | |
|             c1 = mxop(a_mlx[:, :, rev_idx], axis=2)[:, :, rev_idx]
 | |
|             c2 = mxop(a_mlx, axis=2, inclusive=True, reverse=True)
 | |
|             self.assertTrue(mx.array_equal(c1, c2))
 | |
|             c1 = mxop(a_mlx[:, rev_idx, :], axis=1)[:, rev_idx, :]
 | |
|             c2 = mxop(a_mlx, axis=1, inclusive=True, reverse=True)
 | |
|             self.assertTrue(mx.array_equal(c1, c2))
 | |
|             c1 = mxop(a_mlx[rev_idx, :, :], axis=0)[rev_idx, :, :]
 | |
|             c2 = mxop(a_mlx, axis=0, inclusive=True, reverse=True)
 | |
|             self.assertTrue(mx.array_equal(c1, c2))
 | |
| 
 | |
|             rev_idx = mx.arange(31, -1, -1)
 | |
|             c1 = mxop(a_mlx[:, :, rev_idx], axis=2)[:, :, rev_idx][:, :, 1:]
 | |
|             c2 = mxop(a_mlx, axis=2, inclusive=False, reverse=True)[:, :, :-1]
 | |
|             self.assertTrue(mx.array_equal(c1, c2))
 | |
|             c1 = mxop(a_mlx[:, rev_idx, :], axis=1)[:, rev_idx, :][:, 1:, :]
 | |
|             c2 = mxop(a_mlx, axis=1, inclusive=False, reverse=True)[:, :-1, :]
 | |
|             self.assertTrue(mx.array_equal(c1, c2))
 | |
|             c1 = mxop(a_mlx[rev_idx, :, :], axis=0)[rev_idx, :, :][1:, :, :]
 | |
|             c2 = mxop(a_mlx, axis=0, inclusive=False, reverse=True)[:-1, :, :]
 | |
|             self.assertTrue(mx.array_equal(c1, c2))
 | |
| 
 | |
|         a = mx.random.uniform(shape=(8, 32))
 | |
|         mat = mx.tri(32)
 | |
|         for t in [mx.float16, mx.bfloat16]:
 | |
|             a_t = a.astype(t)
 | |
|             mat_t = mat.astype(t)
 | |
|             out = mx.cumsum(a_t, axis=-1)
 | |
|             expected = (mat_t * a_t[:, None, :]).sum(axis=-1)
 | |
|             self.assertTrue(mx.allclose(out, expected, rtol=0.02, atol=1e-3))
 | |
|         sizes = [1023, 1024, 1025, 2047, 2048, 2049]
 | |
|         for s in sizes:
 | |
|             a = mx.ones((s,), mx.int32)
 | |
|             out = mx.cumsum(a)
 | |
|             expected = mx.arange(1, s + 1, dtype=mx.int32)
 | |
|             self.assertTrue(mx.array_equal(expected, out))
 | |
| 
 | |
|             # non-contiguous scan
 | |
|             a = mx.ones((s, 2), mx.int32)
 | |
|             out = mx.cumsum(a, axis=0)
 | |
|             expected = mx.repeat(expected[:, None], 2, axis=1)
 | |
|             self.assertTrue(mx.array_equal(expected, out))
 | |
| 
 | |
|         # Test donation
 | |
|         def fn(its):
 | |
|             x = mx.ones((32,))
 | |
|             for _ in range(its):
 | |
|                 x = mx.cumsum(x)
 | |
|             return x
 | |
| 
 | |
|         mx.synchronize()
 | |
|         mx.eval(fn(2))
 | |
|         mx.synchronize()
 | |
|         mem2 = mx.get_peak_memory()
 | |
|         mx.eval(fn(4))
 | |
|         mx.synchronize()
 | |
|         mem4 = mx.get_peak_memory()
 | |
|         self.assertEqual(mem2, mem4)
 | |
| 
 | |
|     def test_squeeze_expand(self):
 | |
|         a = mx.zeros((2, 1, 2, 1))
 | |
|         self.assertEqual(mx.squeeze(a).shape, (2, 2))
 | |
|         self.assertEqual(mx.squeeze(a, 1).shape, (2, 2, 1))
 | |
|         self.assertEqual(mx.squeeze(a, [1, 3]).shape, (2, 2))
 | |
|         self.assertEqual(a.squeeze().shape, (2, 2))
 | |
|         self.assertEqual(a.squeeze(1).shape, (2, 2, 1))
 | |
|         self.assertEqual(a.squeeze([1, 3]).shape, (2, 2))
 | |
| 
 | |
|         a = mx.zeros((2, 2))
 | |
|         self.assertEqual(mx.squeeze(a).shape, (2, 2))
 | |
| 
 | |
|         self.assertEqual(mx.expand_dims(a, 0).shape, (1, 2, 2))
 | |
|         self.assertEqual(mx.expand_dims(a, (0, 1)).shape, (1, 1, 2, 2))
 | |
|         self.assertEqual(mx.expand_dims(a, [0, -1]).shape, (1, 2, 2, 1))
 | |
| 
 | |
|     def test_sort(self):
 | |
|         shape = (6, 4, 10)
 | |
|         tests = product(
 | |
|             ("int32", "float32"),  # type
 | |
|             (None, 0, 1, 2),  # axis
 | |
|             (True, False),  # strided
 | |
|         )
 | |
|         for dtype, axis, strided in tests:
 | |
|             with self.subTest(dtype=dtype, axis=axis, strided=strided):
 | |
|                 np.random.seed(0)
 | |
|                 np_dtype = getattr(np, dtype)
 | |
|                 a_np = np.random.uniform(0, 100, size=shape).astype(np_dtype)
 | |
|                 a_mx = mx.array(a_np)
 | |
|                 if strided:
 | |
|                     a_mx = a_mx[::2, :, ::2]
 | |
|                     a_np = a_np[::2, :, ::2]
 | |
| 
 | |
|                 b_np = np.sort(a_np, axis=axis)
 | |
|                 b_mx = mx.sort(a_mx, axis=axis)
 | |
| 
 | |
|                 self.assertTrue(np.array_equal(b_np, b_mx))
 | |
|                 self.assertEqual(b_mx.dtype, a_mx.dtype)
 | |
| 
 | |
|                 c_np = np.argsort(a_np, axis=axis)
 | |
|                 c_mx = mx.argsort(a_mx, axis=axis)
 | |
|                 d_np = np.take_along_axis(a_np, c_np, axis=axis)
 | |
|                 d_mx = mx.take_along_axis(a_mx, c_mx, axis=axis)
 | |
| 
 | |
|                 self.assertTrue(np.array_equal(d_np, d_mx))
 | |
|                 self.assertEqual(c_mx.dtype, mx.uint32)
 | |
| 
 | |
|         # Set random seed
 | |
|         np.random.seed(0)
 | |
| 
 | |
|         # Test multi-block sort
 | |
|         for strided in (False, True):
 | |
|             with self.subTest(strided=strided):
 | |
|                 a_np = np.random.normal(size=(32769,)).astype(np.float32)
 | |
|                 a_mx = mx.array(a_np)
 | |
| 
 | |
|                 if strided:
 | |
|                     a_mx = a_mx[::3]
 | |
|                     a_np = a_np[::3]
 | |
| 
 | |
|                 b_np = np.sort(a_np)
 | |
|                 b_mx = mx.sort(a_mx)
 | |
| 
 | |
|                 self.assertTrue(np.array_equal(b_np, b_mx))
 | |
|                 self.assertEqual(b_mx.dtype, a_mx.dtype)
 | |
| 
 | |
|                 # Test multi-dum multi-block sort
 | |
|                 a_np = np.random.normal(size=(2, 4, 32769)).astype(np.float32)
 | |
|                 a_mx = mx.array(a_np)
 | |
| 
 | |
|                 if strided:
 | |
|                     a_mx = a_mx[..., ::3]
 | |
|                     a_np = a_np[..., ::3]
 | |
| 
 | |
|                 b_np = np.sort(a_np, axis=-1)
 | |
|                 b_mx = mx.sort(a_mx, axis=-1)
 | |
| 
 | |
|                 self.assertTrue(np.array_equal(b_np, b_mx))
 | |
|                 self.assertEqual(b_mx.dtype, a_mx.dtype)
 | |
| 
 | |
|                 a_np = np.random.normal(size=(2, 32769, 4)).astype(np.float32)
 | |
|                 a_mx = mx.array(a_np)
 | |
| 
 | |
|                 if strided:
 | |
|                     a_mx = a_mx[:, ::3]
 | |
|                     a_np = a_np[:, ::3]
 | |
| 
 | |
|                 b_np = np.sort(a_np, axis=1)
 | |
|                 b_mx = mx.sort(a_mx, axis=1)
 | |
| 
 | |
|                 self.assertTrue(np.array_equal(b_np, b_mx))
 | |
|                 self.assertEqual(b_mx.dtype, a_mx.dtype)
 | |
| 
 | |
|         # test 0 strides
 | |
|         a_np = np.array([1, 0, 2, 1, 3, 0, 4, 0])
 | |
|         a_mx = mx.array(a_np)
 | |
|         b_np = np.broadcast_to(a_np, (16, 8))
 | |
|         b_mx = mx.broadcast_to(a_mx, (16, 8))
 | |
|         mx.eval(b_mx)
 | |
|         for axis in (0, 1):
 | |
|             c_np = np.sort(b_np, axis=axis)
 | |
|             c_mx = mx.sort(b_mx, axis=axis)
 | |
|             self.assertTrue(np.array_equal(c_np, c_mx))
 | |
|             self.assertEqual(b_mx.dtype, c_mx.dtype)
 | |
| 
 | |
|         # Test very large array
 | |
|         if mx.default_device() == mx.gpu:
 | |
|             a_np = np.random.normal(20, 20, size=(2**22)).astype(np.float32)
 | |
|             a_mx = mx.array(a_np)
 | |
| 
 | |
|             b_np = np.sort(a_np)
 | |
|             b_mx = mx.sort(a_mx)
 | |
|             self.assertTrue(np.array_equal(b_np, b_mx))
 | |
| 
 | |
|         # 1D strided sort
 | |
|         a = mx.array([[4, 3], [2, 1], [5, 4], [3, 2]])
 | |
|         out = mx.argsort(a[:, 1])
 | |
|         expected = mx.array([1, 3, 0, 2], dtype=mx.uint32)
 | |
|         self.assertTrue(mx.array_equal(out, expected))
 | |
| 
 | |
|         # Test array with singleton dim
 | |
|         out = mx.sort(mx.array([1, 2, 3]), axis=0)
 | |
|         self.assertTrue(mx.array_equal(out, mx.array([1, 2, 3])))
 | |
| 
 | |
|         x = np.random.uniform(size=(1, 4, 8, 1)).astype(np.float32)
 | |
|         y_np = np.sort(x, axis=-2)
 | |
|         y_mx = mx.sort(mx.array(x), axis=-2)
 | |
|         self.assertTrue(np.array_equal(y_np, y_mx))
 | |
| 
 | |
|         # Test many segments
 | |
|         a = mx.random.uniform(shape=(512, 128))
 | |
|         y_mx = mx.sort(a, axis=-1)
 | |
|         y_np = np.sort(np.array(a), axis=-1)
 | |
|         self.assertTrue(np.array_equal(y_np, y_mx))
 | |
| 
 | |
|     def test_partition(self):
 | |
|         shape = (3, 4, 5)
 | |
|         for dtype in ("int32", "float32"):
 | |
|             for axis in (None, 0, 1, 2):
 | |
|                 for kth in (-2, 0, 2):
 | |
|                     with self.subTest(dtype=dtype, axis=axis, kth=kth):
 | |
|                         np.random.seed(0)
 | |
|                         np_dtype = getattr(np, dtype)
 | |
|                         a_np = np.random.uniform(0, 100, size=shape).astype(np_dtype)
 | |
|                         a_mx = mx.array(a_np)
 | |
| 
 | |
|                         b_np = np.partition(a_np, kth, axis=axis)
 | |
|                         b_mx = mx.partition(a_mx, kth, axis=axis)
 | |
| 
 | |
|                         c_np = np.take(b_np, (kth,), axis=axis)
 | |
|                         c_mx = np.take(np.array(b_mx), (kth,), axis=axis)
 | |
| 
 | |
|                         self.assertTrue(np.array_equal(c_np, c_mx))
 | |
|                         self.assertEqual(b_mx.dtype, a_mx.dtype)
 | |
| 
 | |
|                         if kth >= 0:
 | |
|                             top_k_mx = mx.topk(a_mx, kth, axis=axis)
 | |
|                             top_k_np = np.take(
 | |
|                                 np.partition(a_np, -kth, axis=axis), (-kth,), axis=axis
 | |
|                             )
 | |
|                             self.assertTrue(np.all(top_k_np <= top_k_mx))
 | |
|                             self.assertEqual(top_k_mx.dtype, a_mx.dtype)
 | |
|                             N = a_mx.shape[axis] if axis is not None else a_mx.size
 | |
|                             M = top_k_mx.shape[axis or 0]
 | |
|                             self.assertEqual(M, (kth + N) % N)
 | |
| 
 | |
|     def test_argpartition(self):
 | |
|         x = mx.broadcast_to(mx.array([1, 2, 3]), (2, 3))
 | |
|         out = mx.argpartition(x, kth=1, axis=0)
 | |
|         expected = mx.array([[0, 0, 0], [1, 1, 1]])
 | |
|         self.assertTrue(mx.array_equal(out, expected))
 | |
| 
 | |
|         x = mx.array([[1, 2], [3, 4]]).T
 | |
|         out = mx.argpartition(x, kth=1, axis=0)
 | |
|         expected = mx.array([[0, 0], [1, 1]])
 | |
|         self.assertTrue(mx.array_equal(out, expected))
 | |
| 
 | |
|     @unittest.skipIf(
 | |
|         os.getenv("LOW_MEMORY", None) is not None,
 | |
|         "This test requires a lot of memory",
 | |
|     )
 | |
|     def test_large_binary(self):
 | |
|         a = mx.ones([1000, 2147484], mx.int8)
 | |
|         b = mx.ones([2147484], mx.int8)
 | |
|         self.assertEqual((a + b)[0, 0].item(), 2)
 | |
| 
 | |
|     def test_eye(self):
 | |
|         self.assertCmpNumpy([3], mx.eye, np.eye)
 | |
|         # Test for non-square matrix
 | |
|         self.assertCmpNumpy([3, 4], mx.eye, np.eye)
 | |
|         # Test with positive k parameter
 | |
|         self.assertCmpNumpy([3, 4], mx.eye, np.eye, k=1)
 | |
|         # Test with negative k parameter
 | |
|         self.assertCmpNumpy([5, 6], mx.eye, np.eye, k=-2)
 | |
| 
 | |
|     def test_stack(self):
 | |
|         a = mx.ones((2,))
 | |
|         np_a = np.ones((2,))
 | |
|         b = mx.ones((2,))
 | |
|         np_b = np.ones((2,))
 | |
| 
 | |
|         # One dimensional stack axis=0
 | |
|         c = mx.stack([a, b])
 | |
|         np_c = np.stack([np_a, np_b])
 | |
|         self.assertTrue(np.array_equal(c, np_c))
 | |
| 
 | |
|         # One dimensional stack axis=1
 | |
|         c = mx.stack([a, b], axis=1)
 | |
|         np_c = np.stack([np_a, np_b], axis=1)
 | |
|         self.assertTrue(np.array_equal(c, np_c))
 | |
| 
 | |
|         a = mx.ones((1, 2))
 | |
|         np_a = np.ones((1, 2))
 | |
|         b = mx.ones((1, 2))
 | |
|         np_b = np.ones((1, 2))
 | |
| 
 | |
|         # Two dimensional stack axis=0
 | |
|         c = mx.stack([a, b])
 | |
|         np_c = np.stack([np_a, np_b])
 | |
|         self.assertTrue(np.array_equal(c, np_c))
 | |
| 
 | |
|         # Two dimensional stack axis=1
 | |
|         c = mx.stack([a, b], axis=1)
 | |
|         np_c = np.stack([np_a, np_b], axis=1)
 | |
|         self.assertTrue(np.array_equal(c, np_c))
 | |
| 
 | |
|     def test_flatten(self):
 | |
|         x = mx.zeros([2, 3, 4])
 | |
|         self.assertEqual(mx.flatten(x).shape, (2 * 3 * 4,))
 | |
|         self.assertEqual(mx.flatten(x, start_axis=1).shape, (2, 3 * 4))
 | |
|         self.assertEqual(mx.flatten(x, end_axis=1).shape, (2 * 3, 4))
 | |
|         self.assertEqual(x.flatten().shape, (2 * 3 * 4,))
 | |
|         self.assertEqual(x.flatten(start_axis=1).shape, (2, 3 * 4))
 | |
|         self.assertEqual(x.flatten(end_axis=1).shape, (2 * 3, 4))
 | |
| 
 | |
|     def test_clip(self):
 | |
|         a = np.array([1, 4, 3, 8, 5], np.int32)
 | |
|         expected = np.clip(a, 2, 6)
 | |
|         clipped = mx.clip(mx.array(a), 2, 6)
 | |
|         self.assertTrue(np.array_equal(clipped, expected))
 | |
| 
 | |
|         a = np.array([-1, 1, 0, 5], np.int32)
 | |
|         expected = np.clip(a, 0, None)
 | |
|         clipped = mx.clip(mx.array(a), 0, None)
 | |
|         self.assertTrue(np.array_equal(clipped, expected))
 | |
| 
 | |
|         a = np.array([2, 3, 4, 5], np.int32)
 | |
|         expected = np.clip(a, None, 4)
 | |
|         clipped = mx.clip(mx.array(a), None, 4)
 | |
|         self.assertTrue(np.array_equal(clipped, expected))
 | |
| 
 | |
|         mins = np.array([3, 1, 5, 5])
 | |
|         a = np.array([2, 3, 4, 5], np.int32)
 | |
|         expected = np.clip(a, mins, 4)
 | |
|         clipped = mx.clip(mx.array(a), mx.array(mins), 4)
 | |
|         self.assertTrue(np.array_equal(clipped, expected))
 | |
| 
 | |
|         maxs = np.array([5, -1, 2, 9])
 | |
|         a = np.array([2, 3, 4, 5], np.int32)
 | |
|         expected = np.clip(a, mins, maxs)
 | |
|         clipped = mx.clip(mx.array(a), mx.array(mins), mx.array(maxs))
 | |
|         self.assertTrue(np.array_equal(clipped, expected))
 | |
| 
 | |
|         # Check clip output types
 | |
|         a = mx.array([1, 2, 3], mx.int16)
 | |
|         out_t = mx.clip(a, a_min=0, a_max=5).dtype
 | |
|         self.assertEqual(out_t, mx.int16)
 | |
| 
 | |
|         out_t = mx.clip(a, a_min=0.0, a_max=5).dtype
 | |
|         self.assertEqual(out_t, mx.float32)
 | |
| 
 | |
|         a = mx.array([1, 2, 3], mx.float16)
 | |
|         out_t = mx.clip(a, a_min=0.0, a_max=5).dtype
 | |
|         self.assertEqual(out_t, mx.float16)
 | |
| 
 | |
|         a = mx.array([1, 2, 3], mx.float16)
 | |
|         out_t = mx.clip(a, a_min=0.0, a_max=mx.array(1.0)).dtype
 | |
|         self.assertEqual(out_t, mx.float32)
 | |
| 
 | |
|     def test_linspace(self):
 | |
|         # Test default num = 50
 | |
|         a = mx.linspace(0, 1)
 | |
|         expected = mx.array(np.linspace(0, 1))
 | |
|         self.assertEqualArray(a, expected)
 | |
| 
 | |
|         # Test int64 dtype
 | |
|         b = mx.linspace(0, 10, 5, mx.int64)
 | |
|         expected = mx.array(np.linspace(0, 10, 5, dtype=int))
 | |
|         self.assertEqualArray(b, expected)
 | |
| 
 | |
|         # Test negative sequence with float start and stop
 | |
|         c = mx.linspace(-2.7, -0.7, 7)
 | |
|         expected = mx.array(np.linspace(-2.7, -0.7, 7))
 | |
|         self.assertEqualArray(c, expected)
 | |
| 
 | |
|         # Test irrational step size of 1/9
 | |
|         d = mx.linspace(0, 1, 10)
 | |
|         expected = mx.array(np.linspace(0, 1, 10))
 | |
|         self.assertEqualArray(d, expected)
 | |
| 
 | |
|         # Test num equal to 1
 | |
|         d = mx.linspace(1, 10, 1)
 | |
|         expected = mx.array(np.linspace(1, 10, 1))
 | |
|         self.assertEqualArray(d, expected)
 | |
| 
 | |
|         # Ensure that the start and stop are always the ones provided
 | |
|         ranges = mx.random.normal((16, 2)).tolist()
 | |
|         nums = (2 + mx.random.uniform(shape=(16,)) * 10).astype(mx.uint32).tolist()
 | |
|         for (a, b), n in zip(ranges, nums):
 | |
|             d = mx.linspace(a, b, n).tolist()
 | |
|             self.assertEqual(d[0], a)
 | |
|             self.assertEqual(d[-1], b)
 | |
| 
 | |
|     def test_repeat(self):
 | |
|         # Setup data for the tests
 | |
|         data = mx.array([[[13, 3], [16, 6]], [[14, 4], [15, 5]], [[11, 1], [12, 2]]])
 | |
|         # Test repeat 0 times
 | |
|         self.assertCmpNumpy([data, 0], mx.repeat, np.repeat)
 | |
|         # Test repeat along axis 0
 | |
|         self.assertCmpNumpy([data, 2], mx.repeat, np.repeat, axis=0)
 | |
|         # Test repeat along axis 1
 | |
|         self.assertCmpNumpy([data, 2], mx.repeat, np.repeat, axis=1)
 | |
|         # Test repeat along the last axis (default)
 | |
|         self.assertCmpNumpy([data, 2], mx.repeat, np.repeat)
 | |
|         # Test repeat with a 1D array along axis 0
 | |
|         self.assertCmpNumpy([mx.array([1, 3, 2]), 3], mx.repeat, np.repeat, axis=0)
 | |
|         # Test repeat with a 2D array along axis 0
 | |
|         self.assertCmpNumpy(
 | |
|             [mx.array([[1, 2, 3], [4, 5, 4], [0, 1, 2]]), 2],
 | |
|             mx.repeat,
 | |
|             np.repeat,
 | |
|             axis=0,
 | |
|         )
 | |
| 
 | |
|     def test_tensordot(self):
 | |
|         # No fp16 matmuls on common cpu backend
 | |
|         if not self.is_apple_silicon:
 | |
|             dtypes = [mx.float32]
 | |
|         else:
 | |
|             dtypes = [mx.float16, mx.float32]
 | |
|         for dtype in dtypes:
 | |
|             with self.subTest(dtype=dtype):
 | |
|                 self.assertCmpNumpy(
 | |
|                     [(3, 4, 5), (4, 3, 2)],
 | |
|                     mx.tensordot,
 | |
|                     np.tensordot,
 | |
|                     dtype=dtype,
 | |
|                     axes=([1, 0], [0, 1]),
 | |
|                 )
 | |
|                 self.assertCmpNumpy(
 | |
|                     [(3, 4, 5), (4, 5, 6)],
 | |
|                     mx.tensordot,
 | |
|                     np.tensordot,
 | |
|                     dtype=dtype,
 | |
|                     axes=2,
 | |
|                 )
 | |
|                 self.assertCmpNumpy(
 | |
|                     [(3, 5, 4, 6), (6, 4, 5, 3)],
 | |
|                     mx.tensordot,
 | |
|                     np.tensordot,
 | |
|                     dtype=dtype,
 | |
|                     axes=([2, 1, 3], [1, 2, 0]),
 | |
|                 )
 | |
| 
 | |
|     def test_inner(self):
 | |
|         self.assertCmpNumpy([(3,), (3,)], mx.inner, np.inner)
 | |
|         self.assertCmpNumpy([(1, 1, 2), (3, 2)], mx.inner, np.inner)
 | |
|         self.assertCmpNumpy([(2, 3, 4), (4,)], mx.inner, np.inner)
 | |
| 
 | |
|     def test_outer(self):
 | |
|         self.assertCmpNumpy([(3,), (3,)], mx.outer, np.outer)
 | |
|         self.assertCmpNumpy(
 | |
|             [
 | |
|                 mx.ones(
 | |
|                     5,
 | |
|                 ),
 | |
|                 mx.linspace(-2, 2, 5),
 | |
|             ],
 | |
|             mx.outer,
 | |
|             np.outer,
 | |
|         )
 | |
|         self.assertCmpNumpy(
 | |
|             [
 | |
|                 1j * mx.linspace(2, -2, 5),
 | |
|                 mx.ones(
 | |
|                     5,
 | |
|                 ),
 | |
|             ],
 | |
|             mx.outer,
 | |
|             np.outer,
 | |
|         )
 | |
| 
 | |
|     def test_divmod(self):
 | |
|         # A few sizes for the inputs with and without broadcasting
 | |
|         sizes = [
 | |
|             ((1,), (1,)),
 | |
|             ((1,), (10,)),
 | |
|             ((10,), (1,)),
 | |
|             ((3,), (3,)),
 | |
|             ((2, 2, 2), (1, 2, 1)),
 | |
|             ((2, 1, 2), (1, 2, 1)),
 | |
|             ((2, 2, 2, 2), (2, 2, 2, 2)),
 | |
|         ]
 | |
|         types = [np.uint16, np.uint32, np.int32, np.float16, np.float32]
 | |
|         for s1, s2 in sizes:
 | |
|             for t in types:
 | |
|                 a_np = np.random.uniform(1, 100, size=s1).astype(t)
 | |
|                 b_np = np.random.uniform(1, 100, size=s2).astype(t)
 | |
|                 np_out = np.divmod(a_np, b_np)
 | |
|                 mx_out = mx.divmod(mx.array(a_np), mx.array(b_np))
 | |
|                 self.assertTrue(
 | |
|                     np.allclose(np_out[0], mx_out[0]), msg=f"Shapes {s1} {s2}, Type {t}"
 | |
|                 )
 | |
| 
 | |
|     def test_tile(self):
 | |
|         self.assertCmpNumpy([(2,), [2]], mx.tile, np.tile)
 | |
|         self.assertCmpNumpy([(2, 3, 4), [2]], mx.tile, np.tile)
 | |
|         self.assertCmpNumpy([(2, 3, 4), [2, 1]], mx.tile, np.tile)
 | |
|         self.assertCmpNumpy(
 | |
|             [
 | |
|                 (2, 3, 4),
 | |
|                 [
 | |
|                     2,
 | |
|                     2,
 | |
|                 ],
 | |
|             ],
 | |
|             mx.tile,
 | |
|             np.tile,
 | |
|         )
 | |
|         self.assertCmpNumpy([(3,), [2, 2, 2]], mx.tile, np.tile)
 | |
| 
 | |
|     def test_empty_matmuls(self):
 | |
|         a = mx.array([])
 | |
|         b = mx.array([])
 | |
|         self.assertEqual(mx.inner(a, b).item(), 0.0)
 | |
| 
 | |
|         a = mx.zeros((10, 0))
 | |
|         b = mx.zeros((0, 10))
 | |
|         out = a @ b
 | |
|         self.assertTrue(mx.array_equal(out, mx.zeros((10, 10))))
 | |
| 
 | |
|     def test_diagonal(self):
 | |
|         x = mx.array(
 | |
|             [
 | |
|                 [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]],
 | |
|                 [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]],
 | |
|             ]
 | |
|         )
 | |
|         expected = [[0, 13], [4, 17], [8, 21]]
 | |
| 
 | |
|         self.assertListEqual(mx.diagonal(x, 0, -1, 0).tolist(), expected)
 | |
| 
 | |
|         expected = [[1, 14], [5, 18], [9, 22]]
 | |
|         self.assertListEqual(mx.diagonal(x, -1, 2, 0).tolist(), expected)
 | |
| 
 | |
|     def test_diag(self):
 | |
|         # Test 1D input
 | |
|         x = mx.array([1, 2, 3, 4])
 | |
|         expected = mx.array([[1, 0, 0, 0], [0, 2, 0, 0], [0, 0, 3, 0], [0, 0, 0, 4]])
 | |
|         result = mx.diag(x)
 | |
|         self.assertTrue(mx.array_equal(result, expected))
 | |
| 
 | |
|         # Test 1D with offset
 | |
|         x = mx.array([2, 6])
 | |
|         result = mx.diag(x, k=5)
 | |
|         expected = mx.array(np.diag(x, k=5))
 | |
|         self.assertTrue(mx.array_equal(result, expected))
 | |
| 
 | |
|         # Test 2D input
 | |
|         x = mx.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
 | |
|         expected = mx.array([1, 5, 9])
 | |
|         result = mx.diag(x)
 | |
|         self.assertTrue(mx.array_equal(result, expected))
 | |
| 
 | |
|         # Test with offset
 | |
|         expected = mx.array([2, 6])
 | |
|         result = mx.diag(x, 1)
 | |
|         self.assertTrue(mx.array_equal(result, expected))
 | |
| 
 | |
|         # Test non-square
 | |
|         x = mx.array([[1, 2, 3], [4, 5, 6]])
 | |
|         result = mx.diag(x)
 | |
|         expected = mx.array(np.diag(x))
 | |
|         self.assertTrue(mx.array_equal(result, expected))
 | |
| 
 | |
|         result = mx.diag(x, k=10)
 | |
|         expected = mx.array(np.diag(x, k=10))
 | |
|         self.assertTrue(mx.array_equal(result, expected))
 | |
| 
 | |
|         result = mx.diag(x, k=-10)
 | |
|         expected = mx.array(np.diag(x, k=-10))
 | |
|         self.assertTrue(mx.array_equal(result, expected))
 | |
| 
 | |
|         result = mx.diag(x, k=-1)
 | |
|         expected = mx.array(np.diag(x, k=-1))
 | |
|         self.assertTrue(mx.array_equal(result, expected))
 | |
| 
 | |
|     def test_trace(self):
 | |
|         a_mx = mx.arange(9, dtype=mx.int64).reshape((3, 3))
 | |
|         a_np = np.arange(9, dtype=np.int64).reshape((3, 3))
 | |
| 
 | |
|         # Test 2D array
 | |
|         result = mx.trace(a_mx)
 | |
|         expected = np.trace(a_np)
 | |
|         self.assertEqualArray(result, mx.array(expected))
 | |
| 
 | |
|         # Test dtype
 | |
|         result = mx.trace(a_mx, dtype=mx.float16)
 | |
|         expected = np.trace(a_np, dtype=np.float16)
 | |
|         self.assertEqualArray(result, mx.array(expected))
 | |
| 
 | |
|         # Test offset
 | |
|         result = mx.trace(a_mx, offset=1)
 | |
|         expected = np.trace(a_np, offset=1)
 | |
|         self.assertEqualArray(result, mx.array(expected))
 | |
| 
 | |
|         # Test axis1 and axis2
 | |
|         b_mx = mx.arange(27, dtype=mx.int64).reshape(3, 3, 3)
 | |
|         b_np = np.arange(27, dtype=np.int64).reshape(3, 3, 3)
 | |
| 
 | |
|         result = mx.trace(b_mx, axis1=1, axis2=2)
 | |
|         expected = np.trace(b_np, axis1=1, axis2=2)
 | |
|         self.assertEqualArray(result, mx.array(expected))
 | |
| 
 | |
|         # Test offset, axis1, axis2, and dtype
 | |
|         result = mx.trace(b_mx, offset=1, axis1=1, axis2=2, dtype=mx.float32)
 | |
|         expected = np.trace(b_np, offset=1, axis1=1, axis2=2, dtype=np.float32)
 | |
|         self.assertEqualArray(result, mx.array(expected))
 | |
| 
 | |
|     def test_atleast_1d(self):
 | |
|         # Test 1D input
 | |
|         arrays = [
 | |
|             [1],
 | |
|             [1, 2, 3],
 | |
|             [1, 2, 3, 4],
 | |
|             [[1], [2], [3]],
 | |
|             [[1, 2], [3, 4]],
 | |
|             [[1, 2, 3], [4, 5, 6]],
 | |
|             [[[[1]], [[2]], [[3]]]],
 | |
|         ]
 | |
| 
 | |
|         mx_arrays = [mx.atleast_1d(mx.array(x)) for x in arrays]
 | |
|         atleast_arrays = mx.atleast_1d(*mx_arrays)
 | |
| 
 | |
|         for i, array in enumerate(arrays):
 | |
|             mx_res = mx.atleast_1d(mx.array(array))
 | |
|             np_res = np.atleast_1d(np.array(array))
 | |
|             self.assertEqual(mx_res.shape, np_res.shape)
 | |
|             self.assertEqual(mx_res.ndim, np_res.ndim)
 | |
|             self.assertTrue(mx.array_equal(mx_res, atleast_arrays[i]))
 | |
| 
 | |
|     def test_atleast_2d(self):
 | |
|         # Test 1D input
 | |
|         arrays = [
 | |
|             [1],
 | |
|             [1, 2, 3],
 | |
|             [1, 2, 3, 4],
 | |
|             [[1], [2], [3]],
 | |
|             [[1, 2], [3, 4]],
 | |
|             [[1, 2, 3], [4, 5, 6]],
 | |
|             [[[[1]], [[2]], [[3]]]],
 | |
|         ]
 | |
| 
 | |
|         mx_arrays = [mx.atleast_2d(mx.array(x)) for x in arrays]
 | |
|         atleast_arrays = mx.atleast_2d(*mx_arrays)
 | |
| 
 | |
|         for i, array in enumerate(arrays):
 | |
|             mx_res = mx.atleast_2d(mx.array(array))
 | |
|             np_res = np.atleast_2d(np.array(array))
 | |
|             self.assertEqual(mx_res.shape, np_res.shape)
 | |
|             self.assertEqual(mx_res.ndim, np_res.ndim)
 | |
|             self.assertTrue(mx.array_equal(mx_res, atleast_arrays[i]))
 | |
| 
 | |
|     def test_atleast_3d(self):
 | |
|         # Test 1D input
 | |
|         arrays = [
 | |
|             [1],
 | |
|             [1, 2, 3],
 | |
|             [1, 2, 3, 4],
 | |
|             [[1], [2], [3]],
 | |
|             [[1, 2], [3, 4]],
 | |
|             [[1, 2, 3], [4, 5, 6]],
 | |
|             [[[[1]], [[2]], [[3]]]],
 | |
|         ]
 | |
| 
 | |
|         mx_arrays = [mx.atleast_3d(mx.array(x)) for x in arrays]
 | |
|         atleast_arrays = mx.atleast_3d(*mx_arrays)
 | |
| 
 | |
|         for i, array in enumerate(arrays):
 | |
|             mx_res = mx.atleast_3d(mx.array(array))
 | |
|             np_res = np.atleast_3d(np.array(array))
 | |
|             self.assertEqual(mx_res.shape, np_res.shape)
 | |
|             self.assertEqual(mx_res.ndim, np_res.ndim)
 | |
|             self.assertTrue(mx.array_equal(mx_res, atleast_arrays[i]))
 | |
| 
 | |
|     def test_issubdtype(self):
 | |
|         self.assertTrue(mx.issubdtype(mx.bfloat16, mx.inexact))
 | |
| 
 | |
|         cats = [
 | |
|             "complexfloating",
 | |
|             "floating",
 | |
|             "inexact",
 | |
|             "signedinteger",
 | |
|             "unsignedinteger",
 | |
|             "integer",
 | |
|             "number",
 | |
|             "generic",
 | |
|             "bool_",
 | |
|             "uint8",
 | |
|             "uint16",
 | |
|             "uint32",
 | |
|             "uint64",
 | |
|             "int8",
 | |
|             "int16",
 | |
|             "int32",
 | |
|             "int64",
 | |
|             "float16",
 | |
|             "float32",
 | |
|             "complex64",
 | |
|         ]
 | |
| 
 | |
|         for a in cats:
 | |
|             for b in cats:
 | |
|                 self.assertEqual(
 | |
|                     mx.issubdtype(getattr(mx, a), getattr(mx, b)),
 | |
|                     np.issubdtype(getattr(np, a), getattr(np, b)),
 | |
|                     f"mx and np don't aggree on {a}, {b}",
 | |
|                 )
 | |
| 
 | |
|     def test_bitwise_ops(self):
 | |
|         types = [
 | |
|             mx.uint8,
 | |
|             mx.uint16,
 | |
|             mx.uint32,
 | |
|             mx.uint64,
 | |
|             mx.int8,
 | |
|             mx.int16,
 | |
|             mx.int32,
 | |
|             mx.int64,
 | |
|         ]
 | |
|         a = mx.random.randint(0, 4096, (1000,))
 | |
|         b = mx.random.randint(0, 4096, (1000,))
 | |
|         for op in ["bitwise_and", "bitwise_or", "bitwise_xor"]:
 | |
|             for t in types:
 | |
|                 a_mlx = a.astype(t)
 | |
|                 b_mlx = b.astype(t)
 | |
|                 a_np = np.array(a_mlx)
 | |
|                 b_np = np.array(b_mlx)
 | |
|                 out_mlx = getattr(mx, op)(a_mlx, b_mlx)
 | |
|                 out_np = getattr(np, op)(a_np, b_np)
 | |
|                 self.assertTrue(np.array_equal(np.array(out_mlx), out_np))
 | |
|         for op in ["left_shift", "right_shift"]:
 | |
|             for t in types:
 | |
|                 a_mlx = a.astype(t)
 | |
|                 b_mlx = mx.random.randint(0, t.size, (1000,)).astype(t)
 | |
|                 a_np = np.array(a_mlx)
 | |
|                 b_np = np.array(b_mlx)
 | |
|                 out_mlx = getattr(mx, op)(a_mlx, b_mlx)
 | |
|                 out_np = getattr(np, op)(a_np, b_np)
 | |
|                 self.assertTrue(np.array_equal(np.array(out_mlx), out_np))
 | |
| 
 | |
|         for t in types:
 | |
|             a_mlx = a.astype(t)
 | |
|             a_np = np.array(a_mlx)
 | |
| 
 | |
|             out_mlx = ~a_mlx
 | |
|             out_np = ~a_np
 | |
|             self.assertTrue(np.array_equal(np.array(out_mlx), out_np))
 | |
| 
 | |
|             out_mlx = mx.bitwise_invert(a_mlx)
 | |
|             out_np = mx.bitwise_invert(a_np)
 | |
|             self.assertTrue(np.array_equal(np.array(out_mlx), out_np))
 | |
| 
 | |
|         # Check broadcasting
 | |
|         a = mx.ones((3, 1, 5), dtype=mx.bool_)
 | |
|         b = mx.zeros((1, 2, 5), dtype=mx.bool_)
 | |
|         c = a | b
 | |
|         self.assertEqual(c.shape, (3, 2, 5))
 | |
|         self.assertTrue(mx.array_equal(c, mx.ones((3, 2, 5), dtype=mx.bool_)))
 | |
| 
 | |
|     def test_bitwise_grad(self):
 | |
|         a = np.random.randint(0, 10, size=(4, 3))
 | |
|         b = np.random.randint(0, 10, size=(4, 3))
 | |
|         cotangent = np.random.randint(0, 10, size=(4, 3))
 | |
|         a = mx.array(a)
 | |
|         b = mx.array(b)
 | |
|         cotangent = mx.array(cotangent)
 | |
| 
 | |
|         def bitwise(a, b):
 | |
|             return a.astype(mx.int32) & b.astype(mx.int32)
 | |
| 
 | |
|         _, vjps = mx.vjp(bitwise, [a, b], [cotangent])
 | |
|         for vjp in vjps:
 | |
|             self.assertFalse(np.any(np.array(vjp)))
 | |
| 
 | |
|     def test_conjugate(self):
 | |
|         shape = (3, 5, 7)
 | |
|         a = np.random.normal(size=shape) + 1j * np.random.normal(size=shape)
 | |
|         a = a.astype(np.complex64)
 | |
|         ops = ["conjugate", "conj"]
 | |
|         for op in ops:
 | |
|             out_mlx = getattr(mx, op)(mx.array(a))
 | |
|             out_np = getattr(np, op)(a)
 | |
|             self.assertTrue(np.array_equal(np.array(out_mlx), out_np))
 | |
|         out_mlx = mx.array(a).conj()
 | |
|         out_np = a.conj()
 | |
|         self.assertTrue(np.array_equal(np.array(out_mlx), out_np))
 | |
| 
 | |
|     def test_view(self):
 | |
|         # Check scalar
 | |
|         out = mx.array(1, mx.int8).view(mx.uint8).item()
 | |
|         self.assertEqual(out, 1)
 | |
| 
 | |
|         a = mx.random.randint(shape=(4, 2, 4), low=-100, high=100)
 | |
|         a_np = np.array(a)
 | |
| 
 | |
|         for t in ["bool_", "int16", "float32", "int64"]:
 | |
|             out = a.view(getattr(mx, t))
 | |
|             expected = a_np.view(getattr(np, t))
 | |
|             self.assertTrue(np.array_equal(out, expected, equal_nan=True))
 | |
| 
 | |
|         # Irregular strides
 | |
|         a = mx.random.randint(shape=(2, 4), low=-100, high=100)
 | |
|         a = mx.broadcast_to(a, shape=(4, 2, 4))
 | |
| 
 | |
|         for t in ["bool_", "int16", "float32", "int64"]:
 | |
|             out = a.view(getattr(mx, t))
 | |
|             a_out = out.view(mx.int32)
 | |
|             self.assertTrue(mx.array_equal(a_out, a, equal_nan=True))
 | |
| 
 | |
|         a = mx.random.randint(shape=(4, 4), low=-100, high=100).T
 | |
|         for t in ["bool_", "int16", "float32", "int64"]:
 | |
|             out = a.view(getattr(mx, t))
 | |
|             a_out = out.view(mx.int32)
 | |
|             self.assertTrue(mx.array_equal(a_out, a, equal_nan=True))
 | |
| 
 | |
|     def _hadamard(self, N):
 | |
|         # Matches scipy.linalg.hadamard
 | |
|         H = np.array([[1]], dtype=np.int64)
 | |
|         for i in range(0, np.log2(N).astype(np.int64)):
 | |
|             H = np.vstack((np.hstack((H, H)), np.hstack((H, -H))))
 | |
|         return H
 | |
| 
 | |
|     def test_hadamard(self):
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.hadamard_transform(mx.array([]))
 | |
| 
 | |
|         h28_str = """
 | |
|         +------++----++-+--+-+--++--
 | |
|         -+-----+++-----+-+--+-+--++-
 | |
|         --+-----+++---+-+-+----+--++
 | |
|         ---+-----+++---+-+-+-+--+--+
 | |
|         ----+-----+++---+-+-+++--+--
 | |
|         -----+-----++++--+-+--++--+-
 | |
|         ------++----++-+--+-+--++--+
 | |
|         --++++-+-------++--+++-+--+-
 | |
|         ---++++-+-----+-++--+-+-+--+
 | |
|         +---+++--+----++-++--+-+-+--
 | |
|         ++---++---+----++-++--+-+-+-
 | |
|         +++---+----+----++-++--+-+-+
 | |
|         ++++--------+-+--++-++--+-+-
 | |
|         -++++--------+++--++--+--+-+
 | |
|         -+-++-++--++--+--------++++-
 | |
|         +-+-++--+--++--+--------++++
 | |
|         -+-+-++--+--++--+----+---+++
 | |
|         +-+-+-++--+--+---+---++---++
 | |
|         ++-+-+-++--+------+--+++---+
 | |
|         -++-+-+-++--+------+-++++---
 | |
|         +-++-+---++--+------+-++++--
 | |
|         -++--++-+-++-+++----++------
 | |
|         +-++--++-+-++-+++-----+-----
 | |
|         ++-++---+-+-++-+++-----+----
 | |
|         -++-++-+-+-+-+--+++-----+---
 | |
|         --++-++++-+-+----+++-----+--
 | |
|         +--++-+-++-+-+----+++-----+-
 | |
|         ++--++-+-++-+-+----++------+
 | |
|         """
 | |
| 
 | |
|         def parse_h_string(h_str):
 | |
|             return np.array(
 | |
|                 [[1 if s == "+" else -1 for s in row] for row in h_str.split()]
 | |
|             )
 | |
| 
 | |
|         h28 = parse_h_string(h28_str)
 | |
| 
 | |
|         x = mx.array(5)
 | |
|         y = mx.hadamard_transform(x)
 | |
|         self.assertEqual(y.item(), 5)
 | |
| 
 | |
|         x = mx.array(5)
 | |
|         y = mx.hadamard_transform(x, scale=0.2)
 | |
|         self.assertEqual(y.item(), 1)
 | |
| 
 | |
|         x = mx.random.normal((8, 8, 1))
 | |
|         y = mx.hadamard_transform(x)
 | |
|         self.assertTrue(mx.all(y == x).item())
 | |
| 
 | |
|         # Too slow to compare to numpy so let's compare CPU to GPU
 | |
|         if mx.default_device() == mx.gpu:
 | |
|             rk = mx.random.key(42)
 | |
|             for k in range(14, 17):
 | |
|                 for m in [1, 3, 5, 7]:
 | |
|                     x = mx.random.normal((4, m * 2**k), key=rk)
 | |
|                     y1 = mx.hadamard_transform(x, stream=mx.cpu)
 | |
|                     y2 = mx.hadamard_transform(x, stream=mx.gpu)
 | |
|                     self.assertLess(mx.abs(y1 - y2).max().item(), 5e-6)
 | |
| 
 | |
|         np.random.seed(7)
 | |
|         tests = product([np.float32, np.float16, np.int32], [1, 28], range(1, 14))
 | |
|         for dtype, m, k in tests:
 | |
|             # skip large m=28 cases because they're very slow in NumPy
 | |
|             if m > 1 and k > 8:
 | |
|                 continue
 | |
|             with self.subTest(dtype=dtype, m=m, k=k):
 | |
|                 n = m * 2**k
 | |
|                 b = 4
 | |
|                 scale = 0.34
 | |
|                 x = np.random.normal(size=(b, n)).astype(dtype)
 | |
|                 # contiguity check
 | |
|                 x = mx.array(x)[::2]
 | |
|                 y = mx.hadamard_transform(x, scale=scale)
 | |
|                 mx.eval(y)
 | |
|                 h = (
 | |
|                     self._hadamard(2**k)
 | |
|                     if m == 1
 | |
|                     else np.kron(h28, self._hadamard(2**k))
 | |
|                 )
 | |
|                 y_np = np.einsum("ij,bj->bi", h, x) * scale
 | |
|                 atol = 2e-4 if dtype == np.float32 else 5e-2 * k
 | |
|                 np.testing.assert_allclose(y, y_np, atol=atol)
 | |
| 
 | |
|                 # bfloat16 emulation on M1 means 2**14 doesn't fit in threadgroup memory
 | |
|                 if dtype == np.float16 and k < 14:
 | |
|                     y_bf16 = mx.hadamard_transform(x.astype(mx.bfloat16), scale=scale)
 | |
|                     np.testing.assert_allclose(
 | |
|                         y_bf16.astype(mx.float16), y, atol=atol * 2
 | |
|                     )
 | |
| 
 | |
|     def test_hadamard_grad_vmap(self):
 | |
|         np.random.seed(4)
 | |
| 
 | |
|         for k in range(2, 8):
 | |
|             n = 2**k
 | |
|             x = np.random.normal(size=(n,))
 | |
|             h = self._hadamard(n)
 | |
|             c = np.random.normal(size=(n,))
 | |
|             x = mx.array(x).astype(mx.float32)
 | |
|             h = mx.array(h).astype(mx.float32)
 | |
|             c = mx.array(c).astype(mx.float32)
 | |
| 
 | |
|             def hadamard_transform(x):
 | |
|                 return h @ x / mx.sqrt(x.shape[-1])
 | |
| 
 | |
|             out = mx.vjp(hadamard_transform, [x], [c])
 | |
|             out_t = mx.vjp(mx.hadamard_transform, [x], [c])
 | |
|             np.testing.assert_allclose(out, out_t, atol=1e-4)
 | |
| 
 | |
|             for axis in (0, 1, 2):
 | |
|                 vht = mx.vmap(mx.vmap(hadamard_transform, 0, 0), axis, axis)
 | |
|                 vht_t = mx.vmap(mx.vmap(mx.hadamard_transform, 0, 0), axis, axis)
 | |
| 
 | |
|                 xb = mx.array(np.random.normal(size=(n, n, n)))
 | |
|                 out = vht(xb)
 | |
|                 out_t = vht_t(xb)
 | |
|                 np.testing.assert_allclose(out, out_t, atol=1e-4)
 | |
| 
 | |
|     def test_roll(self):
 | |
|         x = mx.arange(10).reshape(2, 5)
 | |
| 
 | |
|         for s in [-2, -1, 0, 1, 2]:
 | |
|             y1 = np.roll(x, s)
 | |
|             y2 = mx.roll(x, s)
 | |
|             self.assertTrue(mx.array_equal(y1, y2).item())
 | |
| 
 | |
|             y1 = np.roll(x, (s, s, s))
 | |
|             y2 = mx.roll(x, (s, s, s))
 | |
|             self.assertTrue(mx.array_equal(y1, y2).item())
 | |
| 
 | |
|         shifts = [
 | |
|             1,
 | |
|             2,
 | |
|             -1,
 | |
|             -2,
 | |
|             (1, 1),
 | |
|             (-1, 2),
 | |
|             (33, 33),
 | |
|         ]
 | |
|         axes = [
 | |
|             0,
 | |
|             1,
 | |
|             (1, 0),
 | |
|             (0, 1),
 | |
|             (0, 0),
 | |
|             (1, 1),
 | |
|         ]
 | |
|         for s, a in product(shifts, axes):
 | |
|             y1 = np.roll(x, s, a)
 | |
|             y2 = mx.roll(x, s, a)
 | |
|             self.assertTrue(mx.array_equal(y1, y2).item())
 | |
| 
 | |
|     def test_roll_errors(self):
 | |
|         x = mx.array([])
 | |
|         result = mx.roll(x, [0], [0])
 | |
|         self.assertTrue(mx.array_equal(result, x))
 | |
| 
 | |
|     def test_real_imag(self):
 | |
|         x = mx.random.uniform(shape=(4, 4))
 | |
|         out = mx.real(x)
 | |
|         self.assertTrue(mx.array_equal(x, out))
 | |
| 
 | |
|         out = mx.imag(x)
 | |
|         self.assertTrue(mx.array_equal(mx.zeros_like(x), out))
 | |
| 
 | |
|         y = mx.random.uniform(shape=(4, 4))
 | |
|         z = x + 1j * y
 | |
|         self.assertEqual(mx.real(z).dtype, mx.float32)
 | |
|         self.assertTrue(mx.array_equal(mx.real(z), x))
 | |
|         self.assertEqual(mx.imag(z).dtype, mx.float32)
 | |
|         self.assertTrue(mx.array_equal(mx.imag(z), y))
 | |
| 
 | |
|     def test_dynamic_slicing(self):
 | |
|         x = mx.random.randint(0, 100, shape=(4, 4, 4))
 | |
|         expected = x[1:, 2:, 3:]
 | |
|         out = mx.slice(x, mx.array([1, 2, 3]), (0, 1, 2), (3, 2, 1))
 | |
|         self.assertTrue(mx.array_equal(expected, out))
 | |
| 
 | |
|         x = mx.zeros(shape=(4, 4, 4))
 | |
|         update = mx.random.randint(0, 100, shape=(3, 2, 1))
 | |
|         out = mx.slice_update(x, update, mx.array([1, 2, 3]), (0, 1, 2))
 | |
|         expected = mx.zeros_like(x)
 | |
|         expected[1:, 2:, 3:] = update
 | |
|         self.assertTrue(mx.array_equal(expected, out))
 | |
| 
 | |
|     def test_broadcast_arrays(self):
 | |
|         a = mx.array(1)
 | |
|         b = mx.array(1.0)
 | |
|         a, b = mx.broadcast_arrays(a, b)
 | |
|         self.assertEqual(a.shape, ())
 | |
|         self.assertEqual(a.dtype, mx.int32)
 | |
|         self.assertEqual(b.shape, ())
 | |
|         self.assertEqual(b.dtype, mx.float32)
 | |
| 
 | |
|         a, b = mx.broadcast_arrays(mx.zeros((3, 1, 2)), mx.zeros((4, 1)))
 | |
|         self.assertEqual(a.shape, (3, 4, 2))
 | |
|         self.assertEqual(b.shape, (3, 4, 2))
 | |
| 
 | |
|     def test_slice_update_reversed(self):
 | |
|         a = mx.array([1, 2, 3, 4])
 | |
|         b = a[::-1]
 | |
|         b[::2] = 0
 | |
|         self.assertTrue(mx.array_equal(b, mx.array([0, 3, 0, 1])))
 | |
| 
 | |
|     def test_slice_with_negative_stride(self):
 | |
|         a = mx.random.uniform(shape=(128, 4))
 | |
|         out = a[::-1]
 | |
|         self.assertTrue(mx.array_equal(out[-1, :], a[0, :]))
 | |
| 
 | |
|     def test_complex_ops(self):
 | |
|         x = mx.array(
 | |
|             [
 | |
|                 3.0 + 4.0j,
 | |
|                 -5.0 + 12.0j,
 | |
|                 -8.0 + 0.0j,
 | |
|                 0.0 + 9.0j,
 | |
|                 0.0 + 0.0j,
 | |
|             ]
 | |
|         )
 | |
| 
 | |
|         ops = ["arccos", "arcsin", "arctan", "square", "sqrt"]
 | |
|         for op in ops:
 | |
|             with self.subTest(op=op):
 | |
|                 np_op = getattr(np, op)
 | |
|                 mx_op = getattr(mx, op)
 | |
|                 self.assertTrue(np.allclose(mx_op(x), np_op(x)))
 | |
| 
 | |
|         x = mx.array(
 | |
|             [
 | |
|                 3.0 + 4.0j,
 | |
|                 -5.0 + 12.0j,
 | |
|                 -8.0 + 0.0j,
 | |
|                 0.0 + 9.0j,
 | |
|                 9.0 + 1.0j,
 | |
|             ]
 | |
|         )
 | |
|         self.assertTrue(np.allclose(mx.rsqrt(x), 1.0 / np.sqrt(x)))
 | |
| 
 | |
|     def test_complex_power(self):
 | |
|         out = mx.power(mx.array(0j), 2)
 | |
|         self.assertEqual(out.item(), 0j)
 | |
| 
 | |
|         out = mx.power(mx.array(0j), float("nan"))
 | |
|         self.assertTrue(mx.isnan(out))
 | |
| 
 | |
|     def test_irregular_alignments(self):
 | |
|         # Unaligned unary op
 | |
|         a = mx.ones((64, 1))
 | |
|         b = -a[1:]
 | |
|         self.assertTrue(mx.all(b == -1.0))
 | |
| 
 | |
|         # Unaligned binary op
 | |
|         a = mx.ones((64, 1))
 | |
|         b = a[1:]
 | |
|         c = b + b
 | |
|         self.assertTrue(mx.all(c == 2.0))
 | |
| 
 | |
|         # Unaligned ternary op
 | |
|         a = mx.ones((64, 1))
 | |
|         b = mx.zeros((63, 1))
 | |
|         c = mx.ones((63, 1)).astype(mx.bool_)
 | |
|         d = mx.where(c, a[1:], b)
 | |
|         self.assertTrue(mx.all(d == 1.0))
 | |
| 
 | |
|     def test_integer_power(self):
 | |
|         x = mx.power(2, mx.array([8, 8, 8, 8, 8, 8, 8, 8]))
 | |
|         self.assertTrue(mx.all(x == 256))
 | |
| 
 | |
|         # Doesn't hang
 | |
|         x = mx.power(2, -1)
 | |
| 
 | |
| 
 | |
| class TestBroadcast(mlx_tests.MLXTestCase):
 | |
|     def test_broadcast_shapes(self):
 | |
|         # Basic broadcasting
 | |
|         self.assertEqual(mx.broadcast_shapes((1, 2, 3), (3,)), (1, 2, 3))
 | |
|         self.assertEqual(mx.broadcast_shapes((4, 1, 6), (5, 6)), (4, 5, 6))
 | |
|         self.assertEqual(mx.broadcast_shapes((5, 1, 4), (1, 3, 4)), (5, 3, 4))
 | |
| 
 | |
|         # Multiple arguments
 | |
|         self.assertEqual(mx.broadcast_shapes((1, 1), (1, 8), (7, 1)), (7, 8))
 | |
|         self.assertEqual(
 | |
|             mx.broadcast_shapes((6, 1, 5), (1, 7, 1), (6, 7, 5)), (6, 7, 5)
 | |
|         )
 | |
| 
 | |
|         # Same shapes
 | |
|         self.assertEqual(mx.broadcast_shapes((3, 4, 5), (3, 4, 5)), (3, 4, 5))
 | |
| 
 | |
|         # Single argument
 | |
|         self.assertEqual(mx.broadcast_shapes((2, 3)), (2, 3))
 | |
| 
 | |
|         # Empty shapes
 | |
|         self.assertEqual(mx.broadcast_shapes((), ()), ())
 | |
|         self.assertEqual(mx.broadcast_shapes((), (1,)), (1,))
 | |
|         self.assertEqual(mx.broadcast_shapes((1,), ()), (1,))
 | |
| 
 | |
|         # Broadcasting with zeroes
 | |
|         self.assertEqual(mx.broadcast_shapes((0,), (0,)), (0,))
 | |
|         self.assertEqual(mx.broadcast_shapes((1, 0, 5), (3, 1, 5)), (3, 0, 5))
 | |
|         self.assertEqual(mx.broadcast_shapes((5, 0), (0, 5, 0)), (0, 5, 0))
 | |
| 
 | |
|         # Error cases
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.broadcast_shapes((3, 4), (4, 3))
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.broadcast_shapes((2, 3, 4), (2, 5, 4))
 | |
| 
 | |
|         with self.assertRaises(ValueError):
 | |
|             mx.broadcast_shapes()
 | |
| 
 | |
| 
 | |
| if __name__ == "__main__":
 | |
|     mlx_tests.MLXTestRunner()
 | 
