mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-25 01:41:17 +08:00

* Update API to allow mask='causal' in fast::sdpa * Add fallback * Update steel::AttnParams * Fix typo * WIP, basic causal * Update tests * Update benchmarking * Update masking loop limits * Add bool masking and update tests * Update additive mask * Update benchmarks * Update benchmarks * Update tests * Update for bfloat error * Update early exit * Add random seed to tests
224 lines
6.8 KiB
Python
224 lines
6.8 KiB
Python
# Copyright © 2024 Apple Inc.
|
|
|
|
import argparse
|
|
import math
|
|
import os
|
|
import subprocess
|
|
import time
|
|
|
|
import mlx.core as mx
|
|
import numpy as np
|
|
|
|
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
|
|
device_name = device_name.decode("utf-8").strip("\n")
|
|
|
|
N_warmup = 5
|
|
N_iter_bench = 40
|
|
N_iter_func = 8
|
|
|
|
|
|
def bench(f, *args):
|
|
for i in range(N_warmup):
|
|
f(*args)
|
|
|
|
s = time.perf_counter_ns()
|
|
for i in range(N_iter_bench):
|
|
f(*args)
|
|
e = time.perf_counter_ns()
|
|
return (e - s) * 1e-9
|
|
|
|
|
|
def prepare_inputs(B, qL, kL, D, qH, kH, mask, transpose, dtype):
|
|
np_dtype = getattr(np, dtype)
|
|
|
|
shape_q = (B, qL, qH, D) if transpose else (B, qH, qL, D)
|
|
shape_kv = (B, kL, kH, D) if transpose else (B, kH, kL, D)
|
|
|
|
scale = 1.0 / math.sqrt(D)
|
|
|
|
q_np = np.random.normal(0.0, 1.0, shape_q).astype(np_dtype)
|
|
k_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
|
|
v_np = np.random.normal(0.0, scale, shape_kv).astype(np_dtype)
|
|
|
|
q_mx = mx.array(q_np)
|
|
k_mx = mx.array(k_np)
|
|
v_mx = mx.array(v_np)
|
|
|
|
if mask is not None:
|
|
if mask == "additive":
|
|
mask_np = np.random.normal(0.0, 1.0, (B, qH, qL, kL)).astype(np_dtype)
|
|
mask = mx.array(mask_np)
|
|
elif mask == "bool":
|
|
mask_np = np.random.uniform(0.0, 1.0, (B, qH, qL, kL)) < 0.5
|
|
mask = mx.array(mask_np)
|
|
|
|
return q_mx, k_mx, v_mx, scale, mask
|
|
|
|
|
|
def mlx_ref_attn(q, k, v, scale=1.0, mask=None):
|
|
q_dtype = q.dtype
|
|
q = q * mx.array(scale, q_dtype)
|
|
n_q_heads = q.shape[-3]
|
|
n_kv_heads = k.shape[-3]
|
|
n_repeats = n_q_heads // n_kv_heads
|
|
|
|
B = q.shape[0]
|
|
L = q.shape[2]
|
|
kL = k.shape[2]
|
|
|
|
if n_repeats > 1:
|
|
q = mx.reshape(q, [B, n_kv_heads, n_repeats, L, -1])
|
|
k = mx.expand_dims(k, 2)
|
|
v = mx.expand_dims(v, 2)
|
|
|
|
scores = q @ mx.swapaxes(k, -1, -2)
|
|
|
|
if mask is not None:
|
|
|
|
if mask == "causal":
|
|
q_offset = max(0, kL - L)
|
|
q_indices = mx.arange(q_offset, q_offset + L)
|
|
k_indices = mx.arange(kL)
|
|
mask = q_indices[:, None] >= k_indices[None]
|
|
|
|
if n_repeats > 1 and mask.ndim >= 3:
|
|
if mask.shape[-3] == 1:
|
|
mask = mx.expand_dims(mask, -3)
|
|
else:
|
|
mask = mx.unflatten(mask, -3, (n_kv_heads, n_repeats))
|
|
|
|
if mask.dtype == mx.bool_:
|
|
scores = mx.where(mask, scores, -np.float32(np.inf))
|
|
else:
|
|
scores += mask
|
|
|
|
scores = mx.softmax(scores, axis=-1, precise=True)
|
|
|
|
out = scores @ v
|
|
if n_repeats > 1:
|
|
out = mx.reshape(out, [B, n_q_heads, L, -1])
|
|
|
|
return out
|
|
|
|
|
|
def mlx_fused_attn(q, k, v, scale, mask):
|
|
return mx.fast.scaled_dot_product_attention(q, k, v, scale=scale, mask=mask)
|
|
|
|
|
|
def do_attention(f, q, k, v, scale, mask=None, transpose=False):
|
|
if transpose:
|
|
q_t = mx.transpose(q, (0, 2, 1, 3))
|
|
k_t = mx.transpose(k, (0, 2, 1, 3))
|
|
v_t = mx.transpose(v, (0, 2, 1, 3))
|
|
o_t = f(q_t, k_t, v_t, scale=scale, mask=mask)
|
|
return mx.transpose(o_t, (0, 2, 1, 3))
|
|
else:
|
|
return f(q, k, v, scale=scale, mask=mask)
|
|
|
|
|
|
def do_attention_bench(f, q, k, v, scale, mask=None, transpose=False):
|
|
q_out = q
|
|
|
|
for i in range(N_iter_func):
|
|
q_out = do_attention(f, q_out, k, v, scale, mask=mask, transpose=transpose)
|
|
|
|
mx.eval(q_out)
|
|
return q_out
|
|
|
|
|
|
def bench_shape(
|
|
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, dtype, transpose=True, mask_in=None
|
|
):
|
|
q_mx, k_mx, v_mx, scale, mask = prepare_inputs(
|
|
B, qsl, ksl, head_dim, n_q_heads, n_kv_heads, mask_in, transpose, dtype
|
|
)
|
|
|
|
time_mlx_unfused = bench(
|
|
do_attention_bench, mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose
|
|
)
|
|
time_mlx_fused = bench(
|
|
do_attention_bench, mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose
|
|
)
|
|
|
|
o_mlx_fused = do_attention(mlx_ref_attn, q_mx, k_mx, v_mx, scale, mask, transpose)
|
|
o_mlx_unfused = do_attention(
|
|
mlx_fused_attn, q_mx, k_mx, v_mx, scale, mask, transpose
|
|
)
|
|
|
|
atol = 1e-5 if dtype == "float32" else 2e-4
|
|
|
|
if not mx.allclose(o_mlx_fused, o_mlx_unfused, atol=atol, rtol=atol):
|
|
print(
|
|
f"Failed at (B: {B}, qsl: {qsl}, ksl: {ksl}, head_dim: {head_dim}, n_qh: {n_q_heads}, n_kvh: {n_kv_heads}, mask: {mask_in}) [tpose = {transpose}] with max(|a - b|) = {mx.max(mx.abs(o_mlx_unfused - o_mlx_fused)):3.2e}"
|
|
)
|
|
|
|
return time_mlx_fused, time_mlx_unfused
|
|
|
|
|
|
def get_gflop_count(B, M, N, K):
|
|
return float(2.0 * N_iter_bench * N_iter_func * B * M * N * K) / float(1024.0**3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Run gemm benchmarks")
|
|
|
|
dtypes = ("float16", "float32")[:1]
|
|
transposes = (False,)
|
|
|
|
# fmt: off
|
|
shapes_64 = (
|
|
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
|
( 1, 32, 32, 64, 32, 32),
|
|
( 1, 64, 64, 64, 32, 32),
|
|
( 1, 128, 128, 64, 32, 32),
|
|
( 1, 256, 256, 64, 32, 32),
|
|
( 1, 512, 512, 64, 32, 32),
|
|
( 1, 1024, 1024, 64, 32, 8),
|
|
( 1, 2048, 2048, 64, 32, 8),
|
|
( 1, 4096, 4096, 64, 32, 8),
|
|
)
|
|
|
|
shapes_80 = (
|
|
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
|
( 1, 1024, 1024, 80, 32, 8),
|
|
( 1, 2048, 2048, 80, 32, 8),
|
|
( 1, 4096, 4096, 80, 32, 8),
|
|
)
|
|
|
|
shapes_128 = (
|
|
# ( B, qsl, ksl, head_dim, n_qh, n_kvh)
|
|
( 1, 1024, 1024, 128, 32, 8),
|
|
( 1, 2048, 2048, 128, 32, 8),
|
|
( 1, 4096, 4096, 128, 32, 8),
|
|
)
|
|
# fmt: on
|
|
|
|
shapes = shapes_64 + shapes_80 + shapes_128
|
|
|
|
masks = [None, "bool", "causal"]
|
|
|
|
print(
|
|
" B, qsl, ksl, hdim, n_qh, n_kvh, t, dtype, mask, t_unfs, t_fuse, diff%"
|
|
)
|
|
|
|
for dtype in dtypes:
|
|
for transpose in transposes:
|
|
for B, qsl, ksl, head_dim, n_q_heads, n_kv_heads in shapes:
|
|
for mask_in in masks:
|
|
time_mlx_fused, time_mlx_unfused = bench_shape(
|
|
B,
|
|
qsl,
|
|
ksl,
|
|
head_dim,
|
|
n_q_heads,
|
|
n_kv_heads,
|
|
dtype,
|
|
transpose,
|
|
mask_in,
|
|
)
|
|
diff = time_mlx_unfused / time_mlx_fused - 1.0
|
|
t_str = 1 if transpose else 0
|
|
print(
|
|
f"{B:3d}, {qsl:5d}, {ksl:5d}, {head_dim:4d}, {n_q_heads:4d}, {n_kv_heads:5d}, {t_str:1d}, {dtype}, {str(mask_in):>8}, {time_mlx_unfused: 2.3f}, {time_mlx_fused: 2.3f}, {100. * diff:+5.2f}%"
|
|
)
|