mlx/python/mlx/nn/layers/convolution_transpose.py

243 lines
7.9 KiB
Python

# Copyright © 2023 Apple Inc.
import math
from typing import Union
import mlx.core as mx
from mlx.nn.layers.base import Module
class ConvTranspose1d(Module):
"""Applies a 1-dimensional transposed convolution over the multi-channel input sequence.
The channels are expected to be last i.e. the input shape should be ``NLC`` where:
* ``N`` is the batch dimension
* ``L`` is the sequence length
* ``C`` is the number of input channels
Args:
in_channels (int): The number of input channels
out_channels (int): The number of output channels
kernel_size (int): The size of the convolution filters
stride (int, optional): The stride when applying the filter.
Default: ``1``.
padding (int, optional): How many positions to 0-pad the input with.
Default: ``0``.
dilation (int, optional): The dilation of the convolution.
output_padding(int, optional): Additional size added to one side of the
output shape. Default: ``0``.
bias (bool, optional): If ``True`` add a learnable bias to the output.
Default: ``True``
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
output_padding: int = 0,
bias: bool = True,
):
super().__init__()
scale = math.sqrt(1 / (in_channels * kernel_size))
self.weight = mx.random.uniform(
low=-scale,
high=scale,
shape=(out_channels, kernel_size, in_channels),
)
if bias:
self.bias = mx.zeros((out_channels,))
self.padding = padding
self.dilation = dilation
self.stride = stride
self.output_padding = output_padding
def _extra_repr(self):
return (
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
f"kernel_size={self.weight.shape[1]}, stride={self.stride}, "
f"padding={self.padding}, dilation={self.dilation}, "
f"output_padding={self.output_padding}, "
f"bias={'bias' in self}"
)
def __call__(self, x):
y = mx.conv_transpose1d(
x,
self.weight,
self.stride,
self.padding,
self.dilation,
self.output_padding,
)
if "bias" in self:
y = y + self.bias
return y
class ConvTranspose2d(Module):
"""Applies a 2-dimensional transposed convolution over the multi-channel input image.
The channels are expected to be last i.e. the input shape should be ``NHWC`` where:
* ``N`` is the batch dimension
* ``H`` is the input image height
* ``W`` is the input image width
* ``C`` is the number of input channels
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
kernel_size (int or tuple): The size of the convolution filters.
stride (int or tuple, optional): The size of the stride when
applying the filter. Default: ``1``.
padding (int or tuple, optional): How many positions to 0-pad
the input with. Default: ``0``.
dilation (int or tuple, optional): The dilation of the convolution.
output_padding(int or tuple, optional): Additional size added to one
side of the output shape. Default: ``0``.
bias (bool, optional): If ``True`` add a learnable bias to the
output. Default: ``True``
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, tuple],
stride: Union[int, tuple] = 1,
padding: Union[int, tuple] = 0,
dilation: Union[int, tuple] = 1,
output_padding: Union[int, tuple] = 0,
bias: bool = True,
):
super().__init__()
kernel_size, stride, padding, output_padding = map(
lambda x: (x, x) if isinstance(x, int) else x,
(kernel_size, stride, padding, output_padding),
)
scale = math.sqrt(1 / (in_channels * kernel_size[0] * kernel_size[1]))
self.weight = mx.random.uniform(
low=-scale,
high=scale,
shape=(out_channels, *kernel_size, in_channels),
)
if bias:
self.bias = mx.zeros((out_channels,))
self.padding = padding
self.stride = stride
self.dilation = dilation
self.output_padding = output_padding
def _extra_repr(self):
return (
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
f"kernel_size={self.weight.shape[1:2]}, stride={self.stride}, "
f"padding={self.padding}, dilation={self.dilation}, "
f"output_padding={self.output_padding}, "
f"bias={'bias' in self}"
)
def __call__(self, x):
y = mx.conv_transpose2d(
x,
self.weight,
self.stride,
self.padding,
self.dilation,
self.output_padding,
)
if "bias" in self:
y = y + self.bias
return y
class ConvTranspose3d(Module):
"""Applies a 3-dimensional transposed convolution over the multi-channel input image.
The channels are expected to be last i.e. the input shape should be ``NDHWC`` where:
* ``N`` is the batch dimension
* ``D`` is the input image depth
* ``H`` is the input image height
* ``W`` is the input image width
* ``C`` is the number of input channels
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
kernel_size (int or tuple): The size of the convolution filters.
stride (int or tuple, optional): The size of the stride when
applying the filter. Default: ``1``.
padding (int or tuple, optional): How many positions to 0-pad
the input with. Default: ``0``.
dilation (int or tuple, optional): The dilation of the convolution.
output_padding(int or tuple, optional): Additional size added to one
side of the output shape. Default: ``0``.
bias (bool, optional): If ``True`` add a learnable bias to the
output. Default: ``True``
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, tuple],
stride: Union[int, tuple] = 1,
padding: Union[int, tuple] = 0,
dilation: Union[int, tuple] = 1,
output_padding: Union[int, tuple] = 0,
bias: bool = True,
):
super().__init__()
kernel_size, stride, padding, output_padding = map(
lambda x: (x, x, x) if isinstance(x, int) else x,
(kernel_size, stride, padding, output_padding),
)
scale = math.sqrt(
1 / (in_channels * kernel_size[0] * kernel_size[1] * kernel_size[2])
)
self.weight = mx.random.uniform(
low=-scale,
high=scale,
shape=(out_channels, *kernel_size, in_channels),
)
if bias:
self.bias = mx.zeros((out_channels,))
self.padding = padding
self.stride = stride
self.dilation = dilation
self.output_padding = output_padding
def _extra_repr(self):
return (
f"{self.weight.shape[-1]}, {self.weight.shape[0]}, "
f"kernel_size={self.weight.shape[1:3]}, stride={self.stride}, "
f"padding={self.padding}, dilation={self.dilation}, "
f"output_padding={self.output_padding}, "
f"bias={'bias' in self}"
)
def __call__(self, x):
y = mx.conv_transpose3d(
x,
self.weight,
self.stride,
self.padding,
self.dilation,
self.output_padding,
)
if "bias" in self:
y = y + self.bias
return y