mlx/benchmarks/python/comparative/compare.py

287 lines
13 KiB
Python

# Copyright © 2023 Apple Inc.
#!/usr/bin/env python
import argparse
import re
from pathlib import Path
from subprocess import run
BENCH_MLX = Path(__file__).parent / "bench_mlx.py"
BENCH_TORCH = Path(__file__).parent / "bench_torch.py"
def run_or_raise(*args, **kwargs):
try:
result = run(*args, capture_output=True, **kwargs)
return float(result.stdout)
except ValueError:
raise ValueError(
f"stdout: {result.stdout.decode()}\nstderr: {result.stderr.decode()}"
)
def compare(args):
t_mlx = run_or_raise(["python", BENCH_MLX] + args)
t_torch = run_or_raise(["python", BENCH_TORCH] + args)
print((t_torch - t_mlx) / t_torch, " ".join(args), sep="\t")
def compare_mlx_dtypes(args, dt1, dt2):
t_mlx_dt1 = run_or_raise(["python", BENCH_MLX] + args + ["--dtype", dt1])
t_mlx_dt2 = run_or_raise(["python", BENCH_MLX] + args + ["--dtype", dt2])
print((t_mlx_dt2 - t_mlx_dt1) / t_mlx_dt2, " ".join(args), sep="\t")
def make_regex_search(regexes):
compiled_regexes = list(map(re.compile, regexes))
def search(x):
return (c.search(x) is not None for c in compiled_regexes)
return search
def make_predicate(positive_filter, negative_filter):
if positive_filter is not None:
positive_filter_search = make_regex_search(positive_filter)
positive_filter = lambda x: all(positive_filter_search(x))
else:
positive_filter = lambda x: True
if negative_filter is not None:
negative_filter_search = make_regex_search(negative_filter)
negative_filter = lambda x: not any(negative_filter_search(x))
else:
negative_filter = lambda x: True
def predicate(x):
return positive_filter(x) and negative_filter(x)
return predicate
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run comparisons against PyTorch")
parser.add_argument(
"--filter", "-f", help="Regex filter to select benchmarks", nargs="+"
)
parser.add_argument(
"--negative_filter", "-n", help="Regex filter to remove benchmarks", nargs="+"
)
parser.add_argument(
"--mlx_dtypes",
"-d",
help="Compare mlx benchmarks between the 2 provided data types",
nargs=2,
)
args, rest = parser.parse_known_args()
_filter = make_predicate(args.filter, args.negative_filter)
if args.mlx_dtypes:
compare_filtered = lambda x: (
compare_mlx_dtypes(x.split() + rest, args.mlx_dtypes[0], args.mlx_dtypes[1])
if _filter(x)
else None
)
else:
compare_filtered = lambda x: compare(x.split() + rest) if _filter(x) else None
# Binary ops
compare_filtered("add --size 10x1024x128 --size 1x1024x128 --cpu")
compare_filtered("add --size 10x1024x128 --size 1x1024x128")
compare_filtered("add --size 1024x128 --size 1x128 --cpu")
compare_filtered("add --size 1024x128 --size 1x128")
compare_filtered("add --size 1024x4096 --size 1x4096 --cpu")
compare_filtered("add --size 1024x4096 --size 1x4096")
compare_filtered("add --size 1024x4096 --size 1x1024 --transpose 1,0 --cpu")
compare_filtered("add --size 1024x4096 --size 1x1024 --transpose 1,0")
compare_filtered("add --size 1024x1024 --size 1024x1024 --cpu")
compare_filtered("add --size 1024x1024 --size 1024x1024")
compare_filtered("add --size 1024x1024 --size 1024x1024 --transpose 1,0 --cpu")
compare_filtered("add --size 1024x1024 --size 1024x1024 --transpose 1,0")
compare_filtered(
"add --size 1024x1024 --size 1024x1024 --transpose 1,0 --transpose 1,0 --cpu"
)
compare_filtered(
"add --size 1024x1024 --size 1024x1024 --transpose 1,0 --transpose 1,0"
)
# Reduction ops
compare_filtered("sum_all --size 10x1024x128 --cpu")
compare_filtered("sum_all --size 10x1024x128")
compare_filtered("sum_axis --size 16x1024x128 --axis 2 --cpu")
compare_filtered("sum_axis --size 16x1024x128 --axis 2")
compare_filtered("sum_axis --size 16x128x1024 --axis 2 --cpu")
compare_filtered("sum_axis --size 16x128x1024 --axis 2")
compare_filtered("sum_axis --size 1024x1024 --axis 1 --cpu")
compare_filtered("sum_axis --size 1024x1024 --axis 1")
compare_filtered("sum_axis --size 1024x1024 --axis 0 --cpu")
compare_filtered("sum_axis --size 1024x1024 --axis 0")
compare_filtered("sum_axis --size 16x128x1024 --axis 1 --cpu")
compare_filtered("sum_axis --size 16x128x1024 --axis 1")
compare_filtered("sum_axis --size 16x128x1024 --axis 0 --cpu")
compare_filtered("sum_axis --size 16x128x1024 --axis 0")
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --cpu")
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1")
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --cpu")
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2")
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --transpose 0,2,1 --cpu")
compare_filtered("sum_axis --size 16x128x1024 --axis 0,1 --transpose 0,2,1")
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --transpose 0,2,1 --cpu")
compare_filtered("sum_axis --size 16x128x1024 --axis 0,2 --transpose 0,2,1")
compare_filtered("argmax --size 10x1024x128 --axis 1 --cpu")
compare_filtered("argmax --size 10x1024x128 --axis 1")
compare_filtered("argmax --size 10x1024x128 --axis 2 --cpu")
compare_filtered("argmax --size 10x1024x128 --axis 2")
compare_filtered("argmax --size 1024x1024 --axis 1 --cpu")
compare_filtered("argmax --size 1024x1024 --axis 1")
# Matmul ops
compare_filtered("matmul_square --size 1024x1024")
compare_filtered("matmul_square --size 1024x1024 --cpu")
compare_filtered("matmul_square --size 16x1024x1024")
compare_filtered("matmul_square --size 16x1024x1024 --cpu")
compare_filtered(
"matmul --size 16x768x768 --size 16x768x768 --transpose= --transpose 0,2,1"
)
compare_filtered(
"matmul --size 16x768x768 --size 16x768x768 --transpose= --transpose 0,2,1 --cpu"
)
compare_filtered(
"matmul --size 16x768x128 --size 16x768x128 --transpose= --transpose 0,2,1"
)
compare_filtered(
"matmul --size 16x768x128 --size 16x768x128 --transpose= --transpose 0,2,1 --cpu"
)
compare_filtered("matmul --size 512x8192 --size 8192x512")
compare_filtered("matmul --size 512x8192 --size 8192x512 --cpu")
# compare_filtered("matmul --size 512x131072 --size 131072x512")
# compare_filtered("matmul --size 512x131072 --size 131072x512 --cpu")
compare_filtered("matmul --size 8192x512 --size 512x8192")
compare_filtered("matmul --size 8192x512 --size 512x8192 --cpu")
# compare_filtered("matmul --size 131072x512 --size 512x512")
# compare_filtered("matmul --size 131072x512 --size 512x512 --cpu")
compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024")
compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024 --cpu")
compare_filtered("linear --size 1024x1024 --size 1024 --size 128x1024 --fused")
compare_filtered(
"linear --size 1024x1024 --size 1024 --size 128x1024 --fused --cpu"
)
# Matvec ops
compare_filtered("matmul --size 1x1x4096 --size 4096x4096 --cpu")
compare_filtered("matmul --size 1x1x4096 --size 4096x4096")
compare_filtered(
"matmul --size 1x1x4096 --size 4096x4096 --transpose= --transpose 1,0 --cpu"
)
compare_filtered(
"matmul --size 1x1x4096 --size 4096x4096 --transpose= --transpose 1,0"
)
compare_filtered("matmul --size 32x1x1000 --size 32x1000x128 --cpu")
compare_filtered("matmul --size 32x1x1000 --size 32x1000x128")
compare_filtered(
"matmul --size 32x1x1000 --size 32x128x1000 --transpose= --transpose 0,2,1 --cpu"
)
compare_filtered(
"matmul --size 32x1x1000 --size 32x128x1000 --transpose= --transpose 0,2,1"
)
# Various ops
compare_filtered("softmax --size 32x16x1024 --axis 2")
compare_filtered("softmax --size 32x16x1024 --axis 2 --cpu")
compare_filtered("softmax --size 32x16x1024 --axis 2 --fused")
compare_filtered("softmax --size 32x16x1024 --axis 2 --fused --cpu")
compare_filtered("softmax --size 2x1024x1024 --axis 1")
compare_filtered("softmax --size 2x1024x1024 --axis 1 --cpu")
compare_filtered("softmax --size 2x1024x1024 --axis 1 --fused")
compare_filtered("softmax --size 2x1024x1024 --axis 1 --fused --cpu")
compare_filtered("relu --size 32x16x1024")
compare_filtered("relu --size 32x16x1024 --cpu")
compare_filtered("leaky_relu --size 32x16x1024")
compare_filtered("leaky_relu --size 32x16x1024 --cpu")
compare_filtered("elu --size 32x16x1024")
compare_filtered("elu --size 32x16x1024 --cpu")
compare_filtered("relu6 --size 32x16x1024")
compare_filtered("relu6 --size 32x16x1024 --cpu")
compare_filtered("relu_squared --size 32x16x1024")
compare_filtered("relu_squared --size 32x16x1024 --cpu")
compare_filtered("softplus --size 32x16x1024")
compare_filtered("softplus --size 32x16x1024 --cpu")
compare_filtered("celu --size 32x16x1024")
compare_filtered("celu --size 32x16x1024 --cpu")
compare_filtered("log_sigmoid --size 32x16x1024")
compare_filtered("log_sigmoid --size 32x16x1024 --cpu")
compare_filtered("step --size 32x16x1024")
compare_filtered("step --size 32x16x1024 --cpu")
compare_filtered("selu --size 32x16x1024")
compare_filtered("selu --size 32x16x1024 --cpu")
# compare_filtered("mish --size 32x16x1024") NOTE: Torch does not implement Mish in MPS atm
compare_filtered("mish --size 32x16x1024 --cpu")
compare_filtered("prelu --size 32x16x1024")
compare_filtered("prelu --size 32x16x1024 --cpu")
compare_filtered("scalar_mul --size 32x16x1024")
compare_filtered("scalar_mul --size 32x16x1024 --cpu")
compare_filtered("cross_entropy --size 256x1024")
compare_filtered("cross_entropy --size 256x1024 --cpu")
compare_filtered("logsumexp --size 1024x1024 --axis 1")
compare_filtered("logsumexp --size 1024x1024 --axis 1 --cpu")
compare_filtered("logsumexp --size 1024x1024 --axis 0")
compare_filtered("logsumexp --size 1024x1024 --axis 0 --cpu")
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 2")
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 2 --cpu")
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 1")
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 1 --cpu")
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 0")
compare_filtered("concatenate --size 32x1024x128 --size 32x1024x128 --axis 0 --cpu")
compare_filtered("concatenate --size 32x1024x128 --size 32x16x128 --axis 1")
compare_filtered("concatenate --size 32x1024x128 --size 32x16x128 --axis 1 --cpu")
compare_filtered("concatenate --size 32x1024x128 --size 32x1x128 --axis 1")
compare_filtered("concatenate --size 32x1024x128 --size 32x1x128 --axis 1 --cpu")
compare_filtered("concatenate --size 1x32x1024x128 --size 1x32x1x128 --axis 2")
compare_filtered(
"concatenate --size 1x32x1024x128 --size 1x32x1x128 --axis 2 --cpu"
)
compare_filtered("conv1d --size 1x1000x80 --size 128x11x80")
compare_filtered("conv1d --size 1x1000x80 --size 128x11x80 --cpu")
compare_filtered("conv1d --size 16x1000x80 --size 128x11x80")
compare_filtered("conv1d --size 4x1000x80 --size 128x11x80 --cpu")
compare_filtered("conv2d --size 1x256x256x3 --size 8x3x3x3")
compare_filtered("conv2d --size 1x256x256x3 --size 8x3x3x3 --cpu")
compare_filtered("conv2d --size 16x256x256x3 --size 8x3x3x3")
compare_filtered("conv2d --size 4x256x256x3 --size 8x3x3x3 --cpu")
compare_filtered("cumsum --size 1024x1024 --axis 1 --cpu")
compare_filtered("cumsum --size 1024x1024 --axis 0 --cpu")
compare_filtered("cumsum --size 1024x1024 --axis 1")
compare_filtered("cumsum --size 1024x1024 --axis 0")
compare_filtered("cumsum --size 128x1024 --axis 1")
compare_filtered("cumsum --size 128x1024 --axis 0")
compare_filtered("cumsum --size 1024x4096 --axis 1")
compare_filtered("cumsum --size 1024x4096 --axis 0")
compare_filtered("cumsum --size 128x4096 --axis 1")
compare_filtered("cumsum --size 128x4096 --axis 0")
compare_filtered("cumsum --size 1024x7777 --axis 1")
compare_filtered("cumsum --size 1024x7777 --axis 0")
compare_filtered("cumsum --size 128x7777 --axis 1")
compare_filtered("cumsum --size 128x7777 --axis 0")
compare_filtered("cumsum --size 32768x128 --axis 1")
compare_filtered("cumsum --size 32768x128 --axis 0")
compare_filtered("sort --size 1024x1024 --axis 0")
compare_filtered("sort --size 1024x1024 --axis 1")
compare_filtered("sort --size 32768x128 --axis 0")
compare_filtered("sort --size 32768x128 --axis 1")
compare_filtered("sort --size 128x128 --axis 0 --cpu")
compare_filtered("sort --size 128x128 --axis 1 --cpu")
compare_filtered("topk --size 1024x1024 --axis 0")
compare_filtered("topk --size 1024x1024 --axis 1")
compare_filtered("topk --size 32768x128 --axis 0")
compare_filtered("topk --size 32768x128 --axis 1")
compare_filtered("topk --size 128x128 --axis 0 --cpu")
compare_filtered("topk --size 128x128 --axis 1 --cpu")