mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-25 18:11:15 +08:00
51 lines
1.3 KiB
ReStructuredText
51 lines
1.3 KiB
ReStructuredText
.. _optimizers:
|
|
|
|
Optimizers
|
|
==========
|
|
|
|
The optimizers in MLX can be used both with :mod:`mlx.nn` but also with pure
|
|
:mod:`mlx.core` functions. A typical example involves calling
|
|
:meth:`Optimizer.update` to update a model's parameters based on the loss
|
|
gradients and subsequently calling :func:`mlx.core.eval` to evaluate both the
|
|
model's parameters and the **optimizer state**.
|
|
|
|
.. code-block:: python
|
|
|
|
# Create a model
|
|
model = MLP(num_layers, train_images.shape[-1], hidden_dim, num_classes)
|
|
mx.eval(model.parameters())
|
|
|
|
# Create the gradient function and the optimizer
|
|
loss_and_grad_fn = nn.value_and_grad(model, loss_fn)
|
|
optimizer = optim.SGD(learning_rate=learning_rate)
|
|
|
|
for e in range(num_epochs):
|
|
for X, y in batch_iterate(batch_size, train_images, train_labels):
|
|
loss, grads = loss_and_grad_fn(model, X, y)
|
|
|
|
# Update the model with the gradients. So far no computation has happened.
|
|
optimizer.update(model, grads)
|
|
|
|
# Compute the new parameters but also the optimizer state.
|
|
mx.eval(model.parameters(), optimizer.state)
|
|
|
|
.. toctree::
|
|
|
|
optimizer
|
|
|
|
.. currentmodule:: mlx.optimizers
|
|
|
|
.. autosummary::
|
|
:toctree: _autosummary
|
|
:template: optimizers-template.rst
|
|
|
|
SGD
|
|
RMSprop
|
|
Adagrad
|
|
Adafactor
|
|
AdaDelta
|
|
Adam
|
|
AdamW
|
|
Adamax
|
|
Lion
|