mlx/mlx/io/safetensors.cpp
Awni Hannun c4230747a1
redesign for faster cpu/gpu synch (#1869)
* redesign for faster cpu/gpu synch

* load + more async CPU

* use command encoder API and move more ops to use it

* make fence back-end generic + CPU only fence

* faster build

* fix async eval

* fixes + handle temporaries

* fix / improve cpu conv

* remove unused status, fix siblings

* fix extensions

* fix

* fix no cpu build

* format

* comments

* fix perf regression, remove unecessary abort

* fix events, task limit cpu

* fix waiting

* fix donation / temporaries in normalization
2025-03-06 19:23:38 -08:00

327 lines
9.6 KiB
C++

// Copyright © 2023 Apple Inc.
//
#include <json.hpp>
#include <memory>
#include <stack>
#include "mlx/fast.h"
#include "mlx/io.h"
#include "mlx/io/load.h"
#include "mlx/ops.h"
#include "mlx/primitives.h"
#include "mlx/transforms.h"
using json = nlohmann::json;
#define ST_F16 "F16"
#define ST_BF16 "BF16"
#define ST_F32 "F32"
#define ST_BOOL "BOOL"
#define ST_I8 "I8"
#define ST_I16 "I16"
#define ST_I32 "I32"
#define ST_I64 "I64"
#define ST_U8 "U8"
#define ST_U16 "U16"
#define ST_U32 "U32"
#define ST_U64 "U64"
#define ST_F8_E4M3 "F8_E4M3"
// Note: Complex numbers aren't in the spec yet so this could change -
// https://github.com/huggingface/safetensors/issues/389
#define ST_C64 "C64"
namespace mlx::core {
std::string dtype_to_safetensor_str(Dtype t) {
switch (t) {
case float32:
return ST_F32;
case bfloat16:
return ST_BF16;
case float16:
return ST_F16;
case int64:
return ST_I64;
case int32:
return ST_I32;
case int16:
return ST_I16;
case int8:
return ST_I8;
case uint64:
return ST_U64;
case uint32:
return ST_U32;
case uint16:
return ST_U16;
case uint8:
return ST_U8;
case bool_:
return ST_BOOL;
case complex64:
return ST_C64;
default:
throw std::runtime_error("[save_safetensors] received invalid dtype.");
}
}
Dtype dtype_from_safetensor_str(std::string_view str) {
if (str == ST_F32) {
return float32;
} else if (str == ST_F16) {
return float16;
} else if (str == ST_BF16) {
return bfloat16;
} else if (str == ST_I64) {
return int64;
} else if (str == ST_I32) {
return int32;
} else if (str == ST_I16) {
return int16;
} else if (str == ST_I8) {
return int8;
} else if (str == ST_U64) {
return uint64;
} else if (str == ST_U32) {
return uint32;
} else if (str == ST_U16) {
return uint16;
} else if (str == ST_U8) {
return uint8;
} else if (str == ST_BOOL) {
return bool_;
} else if (str == ST_C64) {
return complex64;
} else if (str == ST_F8_E4M3) {
// We convert this manually later
return uint8;
} else {
throw std::runtime_error(
"[safetensor] unsupported dtype " + std::string(str));
}
}
array f8_e4m3_to_float(array x, Dtype dtype, StreamOrDevice s) {
if (to_stream(s).device == Device::gpu) {
// From PyTorch:
// https://github.com/pytorch/pytorch/blob/e3643e1e0e923f0fc063dfab6f45c956d568919d/c10/util/Float8_e4m3fn.h#L46
std::string source = R"(
uint elem = thread_position_in_grid.x;
uint8_t val = x[elem];
const uint32_t w = (uint32_t)val << 24;
const uint32_t sign = w & 0x80000000;
const uint32_t nonsign = w & 0x7FFFFFFF;
uint32_t renorm_shift = metal::clz(nonsign);
renorm_shift = renorm_shift > 4 ? renorm_shift - 4 : 0;
const int32_t inf_nan_mask =
((int32_t)(nonsign + 0x01000000) >> 8) & 0x7F800000;
const int32_t zero_mask = (int32_t)(nonsign - 1) >> 31;
uint32_t result = sign |
((((nonsign << renorm_shift >> 4) + ((0x78 - renorm_shift) << 23)) |
inf_nan_mask) &
~zero_mask);
float out = *(reinterpret_cast<thread float*>(&result));
y[elem] = static_cast<T>(out);
)";
auto kernel = fast::metal_kernel("f8_e4m3", {"x"}, {"y"}, source);
auto outputs = kernel(
{x},
{x.shape()},
{dtype},
{x.size(), 1, 1},
{256, 1, 1},
{{"T", dtype}},
std::nullopt,
false,
s);
return outputs[0];
} else {
auto w = left_shift(astype(x, uint32, s), array({24}, uint32), s);
auto sign = bitwise_and(w, array({0x80000000}, uint32), s);
auto nonsign = bitwise_and(w, array({0x7FFFFFFF}, uint32), s);
// Emulate a clz op with a lookup table
auto clz_table =
array({28, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0}, uint32);
auto renorm_shift = take(clz_table, bitwise_and(x, array({0xf}), s), s);
renorm_shift = where(
greater(
bitwise_and(x, array({0x70}, uint32), s), array({0}, uint32), s),
array({0}, uint32),
renorm_shift,
s);
auto inf_nan_mask = bitwise_and(
right_shift(
astype(add(nonsign, array(0x01000000, int32), s), int32, s),
array({8}, int32),
s),
array({0x7F800000}, int32),
s);
auto zero_mask = right_shift(
astype(subtract(nonsign, array({1}, uint32), s), int32, s),
array({31}, int32),
s);
zero_mask = astype(zero_mask, uint32, s);
inf_nan_mask = astype(inf_nan_mask, uint32, s);
auto result =
add(right_shift(
left_shift(nonsign, renorm_shift, s), array({4}, uint32), s),
left_shift(
subtract(array({0x78}, uint32), renorm_shift, s),
array({23}, uint32),
s),
s);
result = bitwise_or(
sign,
bitwise_and(
bitwise_or(result, inf_nan_mask, s),
bitwise_invert(zero_mask, s),
s),
s);
result = astype(view(result, float32, s), dtype, s);
return result;
}
}
/** Load array from reader in safetensor format */
SafetensorsLoad load_safetensors(
std::shared_ptr<io::Reader> in_stream,
StreamOrDevice s) {
////////////////////////////////////////////////////////
// Open and check file
if (!in_stream->good() || !in_stream->is_open()) {
throw std::runtime_error(
"[load_safetensors] Failed to open " + in_stream->label());
}
auto stream = to_stream(s, Device::cpu);
if (stream.device != Device::cpu) {
throw std::runtime_error("[load_safetensors] Must run on a CPU stream.");
}
uint64_t jsonHeaderLength = 0;
// This is the same limit as in the original Rust Safetensors code.
constexpr uint64_t kMaxJsonHeaderLength = 100000000;
in_stream->read(reinterpret_cast<char*>(&jsonHeaderLength), 8);
if (jsonHeaderLength <= 0 || jsonHeaderLength >= kMaxJsonHeaderLength) {
throw std::runtime_error(
"[load_safetensors] Invalid json header length " + in_stream->label());
}
// Load the json metadata
auto rawJson = std::make_unique<char[]>(jsonHeaderLength);
in_stream->read(rawJson.get(), jsonHeaderLength);
auto metadata = json::parse(rawJson.get(), rawJson.get() + jsonHeaderLength);
// Should always be an object on the top-level
if (!metadata.is_object()) {
throw std::runtime_error(
"[load_safetensors] Invalid json metadata " + in_stream->label());
}
size_t offset = jsonHeaderLength + 8;
// Load the arrays using metadata
std::unordered_map<std::string, array> res;
std::unordered_map<std::string, std::string> metadata_map;
for (const auto& item : metadata.items()) {
if (item.key() == "__metadata__") {
for (const auto& meta_item : item.value().items()) {
metadata_map.insert({meta_item.key(), meta_item.value()});
}
continue;
}
const std::string& dtype = item.value().at("dtype");
const Shape& shape = item.value().at("shape");
const std::vector<size_t>& data_offsets = item.value().at("data_offsets");
Dtype type = dtype_from_safetensor_str(dtype);
auto loaded_array = array(
shape,
type,
std::make_shared<Load>(
stream, in_stream, offset + data_offsets.at(0), false),
std::vector<array>{});
if (dtype == ST_F8_E4M3) {
loaded_array = f8_e4m3_to_float(loaded_array, bfloat16, s);
}
res.insert({item.key(), loaded_array});
}
return {res, metadata_map};
}
SafetensorsLoad load_safetensors(const std::string& file, StreamOrDevice s) {
return load_safetensors(std::make_shared<io::ParallelFileReader>(file), s);
}
void save_safetensors(
std::shared_ptr<io::Writer> out_stream,
std::unordered_map<std::string, array> a,
std::unordered_map<std::string, std::string> metadata /* = {} */) {
////////////////////////////////////////////////////////
// Check file
if (!out_stream->good() || !out_stream->is_open()) {
throw std::runtime_error(
"[save_safetensors] Failed to open " + out_stream->label());
}
////////////////////////////////////////////////////////
// Check array map
json parent;
json _metadata;
for (auto& [key, value] : metadata) {
_metadata[key] = value;
}
parent["__metadata__"] = _metadata;
{
std::vector<array> to_eval;
to_eval.reserve(a.size());
for (auto& p : a) {
p.second = contiguous(p.second);
to_eval.push_back(p.second);
}
eval(std::move(to_eval));
}
size_t offset = 0;
for (auto& [key, arr] : a) {
if (arr.nbytes() == 0) {
throw std::invalid_argument(
"[save_safetensors] cannot serialize an empty array key: " + key);
}
json child;
child["dtype"] = dtype_to_safetensor_str(arr.dtype());
child["shape"] = arr.shape();
child["data_offsets"] = std::vector<size_t>{offset, offset + arr.nbytes()};
parent[key] = child;
offset += arr.nbytes();
}
auto header = parent.dump();
uint64_t header_len = header.length();
out_stream->write(reinterpret_cast<char*>(&header_len), 8);
out_stream->write(header.c_str(), header_len);
for (auto& [key, arr] : a) {
out_stream->write(arr.data<char>(), arr.nbytes());
}
}
void save_safetensors(
std::string file,
std::unordered_map<std::string, array> a,
std::unordered_map<std::string, std::string> metadata /* = {} */) {
// Add .safetensors to file name if it is not there
if (file.length() < 12 ||
file.substr(file.length() - 12, 12) != ".safetensors")
file += ".safetensors";
// Serialize array
save_safetensors(
std::make_shared<io::FileWriter>(std::move(file)), a, metadata);
}
} // namespace mlx::core