mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 17:31:16 +08:00
119 lines
4.4 KiB
Python
119 lines
4.4 KiB
Python
import unittest
|
|
from itertools import permutations, combinations
|
|
|
|
import mlx.core as mx
|
|
import numpy as np
|
|
|
|
import mlx_tests
|
|
|
|
|
|
class TestReduce(mlx_tests.MLXTestCase):
|
|
def test_axis_permutation_sums(self):
|
|
x_npy = np.random.randn(5, 5, 5, 5, 5).astype(np.float32)
|
|
x_mlx = mx.array(x_npy)
|
|
for t in permutations(range(5)):
|
|
with self.subTest(t=t):
|
|
y_npy = np.transpose(x_npy, t)
|
|
y_mlx = mx.transpose(x_mlx, t)
|
|
for n in range(1, 6):
|
|
for a in combinations(range(5), n):
|
|
with self.subTest(a=a):
|
|
z_npy = np.sum(y_npy, axis=a)
|
|
z_mlx = mx.sum(y_mlx, axis=a)
|
|
mx.eval(z_mlx)
|
|
self.assertTrue(
|
|
np.allclose(z_npy, np.array(z_mlx), atol=1e-4)
|
|
)
|
|
|
|
def test_expand_sums(self):
|
|
x_npy = np.random.randn(5, 1, 5, 1, 5, 1).astype(np.float32)
|
|
x_mlx = mx.array(x_npy)
|
|
for m in range(1, 4):
|
|
for ax in combinations([1, 3, 5], m):
|
|
shape = np.array([5, 1, 5, 1, 5, 1])
|
|
shape[list(ax)] = 5
|
|
shape = shape.tolist()
|
|
with self.subTest(shape=shape):
|
|
y_npy = np.broadcast_to(x_npy, shape)
|
|
y_mlx = mx.broadcast_to(x_mlx, shape)
|
|
for n in range(1, 7):
|
|
for a in combinations(range(6), n):
|
|
with self.subTest(a=a):
|
|
z_npy = np.sum(y_npy, axis=a) / 1000
|
|
z_mlx = mx.sum(y_mlx, axis=a) / 1000
|
|
mx.eval(z_mlx)
|
|
self.assertTrue(
|
|
np.allclose(z_npy, np.array(z_mlx), atol=1e-4)
|
|
)
|
|
|
|
def test_dtypes(self):
|
|
int_dtypes = [
|
|
"int8",
|
|
"int16",
|
|
"int32",
|
|
"uint8",
|
|
"uint16",
|
|
"uint32",
|
|
]
|
|
float_dtypes = ["float32"]
|
|
|
|
for dtype in int_dtypes + float_dtypes:
|
|
with self.subTest(dtype=dtype):
|
|
x = np.random.uniform(0, 2, size=(3, 3, 3)).astype(getattr(np, dtype))
|
|
y = mx.array(x)
|
|
|
|
for op in ("sum", "prod", "min", "max"):
|
|
with self.subTest(op=op):
|
|
|
|
np_op = getattr(np, op)
|
|
mlx_op = getattr(mx, op)
|
|
|
|
for axes in (None, 0, 1, 2, (0, 1), (0, 2), (1, 2), (0, 1, 2)):
|
|
with self.subTest(axes=axes):
|
|
if op in ("sum", "prod"):
|
|
r_np = np_op(
|
|
x, axis=axes, dtype=(getattr(np, dtype))
|
|
)
|
|
else:
|
|
r_np = np_op(x, axis=axes)
|
|
r_mlx = mlx_op(y, axis=axes)
|
|
mx.eval(r_mlx)
|
|
self.assertTrue(np.allclose(r_np, r_mlx, atol=1e-4))
|
|
|
|
def test_arg_reduce(self):
|
|
dtypes = [
|
|
"uint8",
|
|
"uint16",
|
|
"uint32",
|
|
"uint64",
|
|
"int8",
|
|
"int16",
|
|
"int32",
|
|
"int64",
|
|
"float16",
|
|
"float32",
|
|
]
|
|
for dtype in dtypes:
|
|
with self.subTest(dtype=dtype):
|
|
|
|
data = np.random.rand(10, 12, 13).astype(getattr(np, dtype))
|
|
x = mx.array(data)
|
|
for op in ["argmin", "argmax"]:
|
|
for axis in range(3):
|
|
for kd in [True, False]:
|
|
a = getattr(mx, op)(x, axis, kd)
|
|
b = getattr(np, op)(data, axis, keepdims=kd)
|
|
self.assertEqual(a.tolist(), b.tolist())
|
|
|
|
for op in ["argmin", "argmax"]:
|
|
a = getattr(mx, op)(x, keepdims=True)
|
|
b = getattr(np, op)(data, keepdims=True)
|
|
self.assertEqual(a.tolist(), b.tolist())
|
|
a = getattr(mx, op)(x)
|
|
b = getattr(np, op)(data)
|
|
self.assertEqual(a.item(), b)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main(failfast=True)
|