mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-25 01:41:17 +08:00
394 lines
13 KiB
C++
394 lines
13 KiB
C++
// Copyright © 2023-2024 Apple Inc.
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <numeric>
|
|
#include <sstream>
|
|
|
|
#include "mlx/backend/common/compiled.h"
|
|
#include "mlx/backend/common/slicing.h"
|
|
#include "mlx/backend/common/utils.h"
|
|
#include "mlx/backend/gpu/copy.h"
|
|
#include "mlx/backend/gpu/slicing.h"
|
|
#include "mlx/backend/metal/device.h"
|
|
#include "mlx/backend/metal/kernels.h"
|
|
#include "mlx/backend/metal/utils.h"
|
|
#include "mlx/primitives.h"
|
|
#include "mlx/scheduler.h"
|
|
#include "mlx/utils.h"
|
|
|
|
namespace mlx::core {
|
|
|
|
template <typename T>
|
|
void arange_set_scalars(T start, T next, metal::CommandEncoder& enc) {
|
|
enc.set_bytes(start, 0);
|
|
T step = next - start;
|
|
enc.set_bytes(step, 1);
|
|
}
|
|
|
|
static array compute_dynamic_offset(
|
|
const array& indices,
|
|
const Strides& strides,
|
|
const std::vector<int>& axes,
|
|
Stream s) {
|
|
auto& d = metal::device(s.device);
|
|
|
|
// Kernel to compute offset here.
|
|
array offset({1}, int64, nullptr, {});
|
|
bool donate = indices.is_donatable() &&
|
|
(indices.data_size() * indices.itemsize()) >= offset.itemsize();
|
|
if (donate) {
|
|
offset.copy_shared_buffer(indices);
|
|
} else {
|
|
offset.set_data(allocator::malloc(offset.itemsize()));
|
|
}
|
|
d.add_temporary(offset, s.index);
|
|
|
|
auto dtype = indices.dtype();
|
|
std::string lib_name = "compute_dynamic_offset_" + type_to_name(dtype);
|
|
auto lib = d.get_library(lib_name, [dtype]() {
|
|
return fmt::format(
|
|
R"(
|
|
[[kernel]] void compute_dynamic_offset_{0}(
|
|
constant const {1}* indices [[buffer(0)]],
|
|
device int64_t& offset [[buffer(1)]],
|
|
constant const int64_t* strides [[buffer(2)]],
|
|
constant const int* axes [[buffer(3)]],
|
|
constant const int& n_axes [[buffer(4)]],
|
|
uint index [[thread_position_in_grid]]) {{
|
|
int64_t acc = 0;
|
|
for (int i = 0; i < n_axes; ++i) {{
|
|
acc += indices[i] * strides[axes[i]];
|
|
}}
|
|
offset = acc;
|
|
}})",
|
|
type_to_name(dtype),
|
|
get_type_string(dtype));
|
|
});
|
|
auto kernel = d.get_kernel(lib_name, lib);
|
|
|
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
compute_encoder.set_compute_pipeline_state(kernel);
|
|
compute_encoder.set_input_array(indices, 0);
|
|
compute_encoder.set_output_array(offset, 1);
|
|
compute_encoder.set_vector_bytes(strides, 2);
|
|
compute_encoder.set_vector_bytes(axes, 3);
|
|
int n_axes = axes.size();
|
|
compute_encoder.set_bytes(n_axes, 4);
|
|
MTL::Size dims = MTL::Size(1, 1, 1);
|
|
compute_encoder.dispatch_threads(dims, dims);
|
|
return offset;
|
|
}
|
|
|
|
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
assert(inputs.size() == 0);
|
|
out.set_data(allocator::malloc(out.nbytes()));
|
|
if (out.size() == 0) {
|
|
return;
|
|
}
|
|
auto& s = stream();
|
|
auto& d = metal::device(s.device);
|
|
auto kernel = get_arange_kernel(d, "arange" + type_to_name(out), out);
|
|
size_t nthreads = out.size();
|
|
MTL::Size grid_dims = MTL::Size(nthreads, 1, 1);
|
|
MTL::Size group_dims = MTL::Size(
|
|
std::min(nthreads, kernel->maxTotalThreadsPerThreadgroup()), 1, 1);
|
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
compute_encoder.set_compute_pipeline_state(kernel);
|
|
|
|
switch (out.dtype()) {
|
|
case bool_: // unsupported
|
|
throw std::runtime_error("[Arange::eval_gpu] Does not support bool");
|
|
case uint8:
|
|
arange_set_scalars<uint8_t>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
case uint16:
|
|
arange_set_scalars<uint16_t>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
case uint32:
|
|
arange_set_scalars<uint32_t>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
case uint64:
|
|
arange_set_scalars<uint64_t>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
case int8:
|
|
arange_set_scalars<int8_t>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
case int16:
|
|
arange_set_scalars<int16_t>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
case int32:
|
|
arange_set_scalars<int32_t>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
case int64:
|
|
arange_set_scalars<int64_t>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
case float16:
|
|
arange_set_scalars<float16_t>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
case float32:
|
|
arange_set_scalars<float>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
case bfloat16:
|
|
arange_set_scalars<bfloat16_t>(start_, start_ + step_, compute_encoder);
|
|
break;
|
|
default:
|
|
throw std::runtime_error("[Arange::eval_gpu] Does not support type.");
|
|
}
|
|
|
|
compute_encoder.set_output_array(out, 2);
|
|
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
}
|
|
|
|
void ArgReduce::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
assert(inputs.size() == 1);
|
|
auto& in = inputs[0];
|
|
out.set_data(allocator::malloc(out.nbytes()));
|
|
auto& s = stream();
|
|
auto& d = metal::device(s.device);
|
|
std::string op_name;
|
|
switch (reduce_type_) {
|
|
case ArgReduce::ArgMin:
|
|
op_name = "argmin_";
|
|
break;
|
|
case ArgReduce::ArgMax:
|
|
op_name = "argmax_";
|
|
break;
|
|
}
|
|
|
|
// Prepare the shapes, strides and axis arguments.
|
|
auto in_strides = in.strides();
|
|
auto shape = in.shape();
|
|
auto out_strides = out.strides();
|
|
auto axis_stride = in_strides[axis_];
|
|
size_t axis_size = shape[axis_];
|
|
if (out_strides.size() == in_strides.size()) {
|
|
out_strides.erase(out_strides.begin() + axis_);
|
|
}
|
|
in_strides.erase(in_strides.begin() + axis_);
|
|
shape.erase(shape.begin() + axis_);
|
|
size_t ndim = shape.size();
|
|
|
|
// ArgReduce
|
|
int simd_size = 32;
|
|
int n_reads = 4;
|
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
{
|
|
auto kernel = d.get_kernel(op_name + type_to_name(in));
|
|
NS::UInteger thread_group_size = std::min(
|
|
(axis_size + n_reads - 1) / n_reads,
|
|
kernel->maxTotalThreadsPerThreadgroup());
|
|
// round up to the closest number divisible by simd_size
|
|
thread_group_size =
|
|
(thread_group_size + simd_size - 1) / simd_size * simd_size;
|
|
assert(thread_group_size <= kernel->maxTotalThreadsPerThreadgroup());
|
|
|
|
size_t n_threads = out.size() * thread_group_size;
|
|
MTL::Size grid_dims = MTL::Size(n_threads, 1, 1);
|
|
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
|
compute_encoder.set_compute_pipeline_state(kernel);
|
|
compute_encoder.set_input_array(in, 0);
|
|
compute_encoder.set_output_array(out, 1);
|
|
if (ndim == 0) {
|
|
// Pass place holders so metal doesn't complain
|
|
int shape_ = 0;
|
|
int64_t stride_ = 0;
|
|
compute_encoder.set_bytes(shape_, 2);
|
|
compute_encoder.set_bytes(stride_, 3);
|
|
compute_encoder.set_bytes(stride_, 4);
|
|
} else {
|
|
compute_encoder.set_vector_bytes(shape, 2);
|
|
compute_encoder.set_vector_bytes(in_strides, 3);
|
|
compute_encoder.set_vector_bytes(out_strides, 4);
|
|
}
|
|
compute_encoder.set_bytes(ndim, 5);
|
|
compute_encoder.set_bytes(axis_stride, 6);
|
|
compute_encoder.set_bytes(axis_size, 7);
|
|
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
}
|
|
}
|
|
|
|
void Load::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
throw std::runtime_error("[Load::eval_gpu] Not implemented.");
|
|
}
|
|
|
|
void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
assert(inputs.size() == 1);
|
|
|
|
// keys has shape (N1, ..., NK, 2)
|
|
// out has shape (N1, ..., NK, M1, M2, ...)
|
|
auto& keys = inputs[0];
|
|
size_t num_keys = keys.size() / 2;
|
|
|
|
size_t elems_per_key = out.size() / num_keys;
|
|
size_t bytes_per_key = out.itemsize() * elems_per_key;
|
|
out.set_data(allocator::malloc(out.nbytes()));
|
|
if (out.size() == 0) {
|
|
return;
|
|
}
|
|
|
|
size_t out_per_key = (bytes_per_key + 4 - 1) / 4;
|
|
size_t half_size = out_per_key / 2;
|
|
bool odd = out_per_key % 2;
|
|
|
|
auto& s = stream();
|
|
auto& d = metal::device(s.device);
|
|
std::string kname = keys.flags().row_contiguous ? "rbitsc" : "rbits";
|
|
auto kernel = d.get_kernel(kname);
|
|
|
|
// organize into grid nkeys x elem_per_key
|
|
MTL::Size grid_dims = MTL::Size(num_keys, half_size + odd, 1);
|
|
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
|
auto group_dims = get_block_dims(num_keys, half_size + odd, 1);
|
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
compute_encoder.set_compute_pipeline_state(kernel);
|
|
compute_encoder.set_input_array(keys, 0);
|
|
compute_encoder.set_output_array(out, 1);
|
|
compute_encoder.set_bytes(odd, 2);
|
|
compute_encoder.set_bytes(bytes_per_key, 3);
|
|
|
|
if (!keys.flags().row_contiguous) {
|
|
int ndim = keys.ndim();
|
|
compute_encoder.set_bytes(ndim, 4);
|
|
compute_encoder.set_vector_bytes(keys.shape(), 5);
|
|
compute_encoder.set_vector_bytes(keys.strides(), 6);
|
|
}
|
|
|
|
compute_encoder.dispatch_threads(grid_dims, group_dims);
|
|
}
|
|
|
|
void DynamicSlice::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
if (out.size() == 0) {
|
|
out.set_data(nullptr);
|
|
return;
|
|
}
|
|
|
|
auto& in = inputs[0];
|
|
auto& start = inputs[1];
|
|
out.set_data(allocator::malloc(out.nbytes()));
|
|
auto s = stream();
|
|
auto in_offset = compute_dynamic_offset(start, in.strides(), axes_, s);
|
|
copy_gpu_inplace(
|
|
/* const array& src = */ in,
|
|
/* array& dst = */ out,
|
|
/* const Shape& data_shape = */ out.shape(),
|
|
/* const Strides& i_strides = */ in.strides(),
|
|
/* const Strides& o_strides = */ out.strides(),
|
|
/* int64_t i_offset = */ 0,
|
|
/* int64_t o_offset = */ 0,
|
|
/* CopyType ctype = */ CopyType::GeneralGeneral,
|
|
/* const Stream& s = */ s,
|
|
/* const std::optional<array>& dynamic_i_offset = */ in_offset,
|
|
/* const std::optional<array>& dynamic_o_offset = */ std::nullopt);
|
|
}
|
|
|
|
void DynamicSliceUpdate::eval_gpu(
|
|
const std::vector<array>& inputs,
|
|
array& out) {
|
|
if (out.size() == 0) {
|
|
out.set_data(nullptr);
|
|
return;
|
|
}
|
|
|
|
auto& in = inputs[0];
|
|
auto& upd = inputs[1];
|
|
auto& start_indices = inputs[2];
|
|
|
|
if (upd.size() == 0) {
|
|
out.copy_shared_buffer(in);
|
|
return;
|
|
}
|
|
|
|
// Copy or donate input to output
|
|
auto s = stream();
|
|
auto& d = metal::device(s.device);
|
|
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
|
? CopyType::Vector
|
|
: CopyType::General;
|
|
copy_gpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, s);
|
|
|
|
auto out_offset =
|
|
compute_dynamic_offset(start_indices, out.strides(), axes_, s);
|
|
copy_gpu_inplace(
|
|
/* const array& src = */ upd,
|
|
/* array& dst = */ out,
|
|
/* const Shape& data_shape = */ upd.shape(),
|
|
/* const Strides& i_strides = */ upd.strides(),
|
|
/* const Strides& o_strides = */ out.strides(),
|
|
/* int64_t i_offset = */ 0,
|
|
/* int64_t o_offset = */ 0,
|
|
/* CopyType ctype = */ CopyType::GeneralGeneral,
|
|
/* const Stream& s = */ s,
|
|
/* const std::optional<array>& dynamic_i_offset = */ std::nullopt,
|
|
/* const std::optional<array>& dynamic_o_offset = */ out_offset);
|
|
}
|
|
|
|
void SliceUpdate::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
assert(inputs.size() == 2);
|
|
if (out.size() == 0) {
|
|
out.set_data(nullptr);
|
|
return;
|
|
}
|
|
|
|
auto& in = inputs[0];
|
|
auto& upd = inputs[1];
|
|
|
|
if (upd.size() == 0) {
|
|
out.copy_shared_buffer(in);
|
|
return;
|
|
}
|
|
|
|
auto ctype = in.flags().contiguous && in.size() == in.data_size()
|
|
? CopyType::Vector
|
|
: CopyType::General;
|
|
copy_gpu(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype, stream());
|
|
auto [data_offset, out_strides] =
|
|
prepare_slice(out, start_indices_, strides_);
|
|
|
|
// Do copy
|
|
copy_gpu_inplace(
|
|
/* const array& src = */ upd,
|
|
/* array& dst = */ out,
|
|
/* const Shape& data_shape = */ upd.shape(),
|
|
/* const Strides& i_strides = */ upd.strides(),
|
|
/* const Strides& o_strides = */ out_strides,
|
|
/* int64_t i_offset = */ 0,
|
|
/* int64_t o_offset = */ data_offset,
|
|
/* CopyType ctype = */ CopyType::GeneralGeneral,
|
|
/* const Stream& s = */ stream());
|
|
}
|
|
|
|
void QRF::eval_gpu(
|
|
const std::vector<array>& inputs,
|
|
std::vector<array>& outputs) {
|
|
throw std::runtime_error("[QRF::eval_gpu] Metal QR factorization NYI.");
|
|
}
|
|
|
|
void SVD::eval_gpu(
|
|
const std::vector<array>& inputs,
|
|
std::vector<array>& outputs) {
|
|
throw std::runtime_error("[SVD::eval_gpu] Metal SVD NYI.");
|
|
}
|
|
|
|
void Inverse::eval_gpu(const std::vector<array>& inputs, array& output) {
|
|
throw std::runtime_error("[Inverse::eval_gpu] Metal inversion NYI.");
|
|
}
|
|
|
|
void Cholesky::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
throw std::runtime_error(
|
|
"[Cholesky::eval_gpu] Metal Cholesky decomposition NYI.");
|
|
}
|
|
|
|
void Eigh::eval_gpu(
|
|
const std::vector<array>& inputs,
|
|
std::vector<array>& outputs) {
|
|
throw std::runtime_error("[Eigvalsh::eval_gpu] Metal Eigh NYI.");
|
|
}
|
|
|
|
void LUF::eval_gpu(
|
|
const std::vector<array>& inputs,
|
|
std::vector<array>& outputs) {
|
|
throw std::runtime_error("[LUF::eval_gpu] Metal LU factorization NYI.");
|
|
}
|
|
|
|
} // namespace mlx::core
|