MLX: An array framework for Apple silicon
mlx
Go to file
2023-11-29 12:54:28 -08:00
benchmarks jagrit's commit files 2023-11-29 10:52:08 -08:00
cmake jagrit's commit files 2023-11-29 10:52:08 -08:00
docs doc link 2023-11-29 12:45:41 -08:00
examples jagrit's commit files 2023-11-29 10:52:08 -08:00
mlx missing file 2023-11-29 12:38:32 -08:00
python jagrit's commit files 2023-11-29 10:52:08 -08:00
tests jagrit's commit files 2023-11-29 10:52:08 -08:00
.clang-format awni's commit files 2023-11-29 10:30:41 -08:00
.gitignore angelos's commit files 2023-11-29 10:42:59 -08:00
.pre-commit-config.yaml angelos's commit files 2023-11-29 10:42:59 -08:00
CMakeLists.txt angelos's commit files 2023-11-29 10:42:59 -08:00
CODE_OF_CONDUCT.md contribution and code of conduct (#1) 2023-11-29 12:54:28 -08:00
CONTRIBUTING.md contribution and code of conduct (#1) 2023-11-29 12:54:28 -08:00
LICENSE Initial commit 2023-11-28 15:33:45 -08:00
MANIFEST.in awni's commit files 2023-11-29 10:30:41 -08:00
mlx.pc.in awni's commit files 2023-11-29 10:30:41 -08:00
pyproject.toml jagrit's commit files 2023-11-29 10:52:08 -08:00
README.md contribution and code of conduct (#1) 2023-11-29 12:54:28 -08:00
setup.py jagrit's commit files 2023-11-29 10:52:08 -08:00

MLX

MLX is an array framework for machine learning specifically targeting Apple Silicon. MLX is designed with inspiration from Jax, PyTorch, ArrayFire.

Documentation

Build

mkdir -p build && cd build
cmake .. && make -j

Run the C++ tests with make test (or ./tests/tests for more detailed output).

Python bidings

To install run:

env CMAKE_BUILD_PARALLEL_LEVEL="" pip install .

For developing use an editable install:

env CMAKE_BUILD_PARALLEL_LEVEL="" pip install -e .

To make sure the install is working run the tests with:

python -m unittest discover python/tests

Contributing

Check out the contribution guidelines for more information on contributing to MLX.