mlx/python/tests/test_conv.py
2023-11-29 10:52:08 -08:00

446 lines
15 KiB
Python

import unittest
from itertools import permutations
import math
import mlx.core as mx
import numpy as np
import mlx_tests
try:
import torch
import torch.nn.functional as F
has_torch = True
except ImportError as e:
has_torch = False
class TestConv(mlx_tests.MLXTestCase):
def test_numpy_conv(self):
for dtype in (
"float16",
"float32",
):
np_dtype = getattr(np, dtype)
for M, N, mode in (
(1, 1, "full"),
(25, 5, "full"),
(24, 5, "same"),
(24, 4, "same"),
(24, 4, "valid"),
(4, 24, "full"),
(5, 25, "same"),
(4, 25, "valid"),
):
with self.subTest(dtype=dtype, M=M, N=N, mode=mode):
atol = 1e-6 if dtype == "float32" else 1e-5
a_np = np.random.rand(M).astype(np_dtype)
v_np = np.random.rand(N).astype(np_dtype)
a_mx = mx.array(a_np)
v_mx = mx.array(v_np)
c_np = np.convolve(a_np, v_np, mode=mode)
c_mx = mx.convolve(a_mx, v_mx, mode=mode)
self.assertListEqual(list(c_mx.shape), list(c_np.shape))
self.assertTrue(np.allclose(c_mx, c_np, atol=atol))
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_1D(self):
def run_conv1D(
N,
C,
O,
iH,
kH,
stride,
padding,
dilation=1,
groups=1,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
iH=iH,
kH=kH,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_pt, wt_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 2, 1)), (in_np, wt_np)
)
out_mx = mx.conv1d(
in_mx,
wt_mx,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
out_pt = torch.conv1d(
in_pt,
wt_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
out_pt = torch.transpose(out_pt, 2, 1)
self.assertListEqual(list(out_pt.shape), out_mx.shape)
self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=atol))
for dtype in ("float32",):
for N, C, O in (
(1, 1, 1),
(1, 6, 1),
(1, 1, 6),
(4, 32, 64),
):
for iH, kH, stride, padding in (
(1, 1, 1, 0),
(3, 3, 1, 0),
(31, 5, 5, 2),
):
run_conv1D(N, C, O, iH, kH, stride, padding, dtype=dtype)
# Strided inputs tests
for tpose_in, tpose_wt in (
((0, 2, 1), (0, 1, 2)),
((0, 2, 1), (0, 2, 1)),
):
with self.subTest(name="strided", tpose_in=tpose_in, tpose_wt=tpose_wt):
in_np = np.random.normal(0, 1.0 / 16, (16, 16, 16)).astype(np.float32)
wt_np = np.random.normal(0, 1.0 / 16, (16, 16, 16)).astype(np.float32)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_mx_t = mx.transpose(in_mx, tpose_in)
wt_mx_t = mx.transpose(wt_mx, tpose_wt)
out_mx = mx.conv1d(in_mx_t, wt_mx_t)
in_pt, wt_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 2, 1)),
(in_np.transpose(tpose_in), wt_np.transpose(tpose_wt)),
)
out_pt = torch.conv1d(in_pt, wt_pt)
out_pt = torch.transpose(out_pt, 2, 1)
self.assertListEqual(list(out_pt.shape), out_mx.shape)
self.assertTrue(np.allclose(out_pt.numpy(), out_mx, atol=1e-5))
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_1D_grad(self):
def run_conv1D_grad(
N,
C,
O,
iH,
kH,
stride,
padding,
dilation=1,
groups=1,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
iH=iH,
kH=kH,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
oH = 1 + ((iH + 2 * padding - dilation * (kH - 1) - 1) // stride)
in_np = np.random.normal(0, 1.0 / C, (N, iH, C)).astype(np_dtype)
wt_np = np.random.normal(0, 1.0 / C, (O, kH, C)).astype(np_dtype)
ct_np = np.random.normal(0, 1.0 / C, (N, oH, O)).astype(np_dtype)
in_mx, wt_mx, ct_mx = map(mx.array, (in_np, wt_np, ct_np))
in_pt, wt_pt, ct_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 2, 1)),
(in_np, wt_np, ct_np),
)
def f(a, b):
return mx.conv1d(
a,
b,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
_, outs_mx = mx.vjp(
f,
[
in_mx,
wt_mx,
],
[
ct_mx,
],
)
pt_grad_in = F.grad.conv1d_input(
in_pt.shape,
wt_pt,
ct_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
pt_grad_wt = F.grad.conv1d_weight(
in_pt,
wt_pt.shape,
ct_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
pt_grad_in = torch.transpose(pt_grad_in, 2, 1).numpy()
pt_grad_wt = torch.transpose(pt_grad_wt, 2, 1).numpy()
mx_grad_in, mx_grad_wt = outs_mx
self.assertListEqual(list(pt_grad_in.shape), mx_grad_in.shape)
self.assertListEqual(list(in_mx.shape), mx_grad_in.shape)
self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
self.assertListEqual(list(pt_grad_wt.shape), mx_grad_wt.shape)
self.assertListEqual(list(wt_mx.shape), mx_grad_wt.shape)
self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
for dtype in ("float32",):
for N, C, O in (
(1, 1, 1),
(1, 6, 1),
(1, 1, 6),
(4, 32, 64),
):
for iH, kH, stride, padding in (
(1, 1, 1, 0),
(3, 3, 1, 0),
(31, 5, 5, 2),
):
run_conv1D_grad(N, C, O, iH, kH, stride, padding, dtype=dtype)
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_2D(self):
def run_conv2D(
N,
C,
O,
idim,
kdim,
stride,
padding,
dilation=(1, 1),
groups=1,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
idim=idim,
kdim=kdim,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
iH, iW = idim
kH, kW = kdim
scale = 1.0 / math.sqrt(kH * kW * C)
in_np = np.random.normal(0.0, scale, (N, iH, iW, C)).astype(np_dtype)
wt_np = np.random.normal(0.0, 1.0, (O, kH, kW, C)).astype(np_dtype)
in_mx, wt_mx = map(mx.array, (in_np, wt_np))
in_pt, wt_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 3, 1, 2)).to("cpu"),
(in_np, wt_np),
)
out_mx = mx.conv2d(
in_mx,
wt_mx,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
out_pt = torch.conv2d(
in_pt,
wt_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
out_pt = torch.permute(out_pt, (0, 2, 3, 1)).numpy(force=True)
self.assertListEqual(list(out_pt.shape), list(out_mx.shape))
self.assertTrue(np.allclose(out_pt, out_mx, atol=atol))
for dtype in ("float32",):
for N, C, O in (
(1, 1, 1),
(1, 6, 1),
(1, 1, 6),
(4, 32, 64),
):
for idim, kdim, stride, padding in (
((1, 1), (1, 1), (1, 1), (0, 0)),
((3, 3), (3, 1), (1, 1), (0, 0)),
((31, 31), (5, 5), (5, 5), (2, 2)),
):
run_conv2D(N, C, O, idim, kdim, stride, padding, dtype=dtype)
@unittest.skipIf(not has_torch, "requires Torch")
def test_torch_conv_2D_grad(self):
def run_conv2D_grad(
N,
C,
O,
idim,
kdim,
stride,
padding,
dilation=(1, 1),
groups=1,
dtype="float32",
atol=1e-5,
):
with self.subTest(
dtype=dtype,
N=N,
C=C,
O=O,
idim=idim,
kdim=kdim,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
):
np_dtype = getattr(np, dtype)
np.random.seed(0)
iH, iW = idim
kH, kW = kdim
scale = 1.0 / math.sqrt(kH * kW * C)
oH = 1 + (
(iH + 2 * padding[0] - dilation[0] * (kH - 1) - 1) // stride[0]
)
oW = 1 + (
(iW + 2 * padding[1] - dilation[1] * (kW - 1) - 1) // stride[1]
)
in_np = np.random.normal(0.0, scale, (N, iH, iW, C)).astype(np_dtype)
wt_np = np.random.normal(0.0, scale, (O, kH, kW, C)).astype(np_dtype)
ct_np = np.random.normal(0.0, scale, (N, oH, oW, O)).astype(np_dtype)
in_mx, wt_mx, ct_mx = map(mx.array, (in_np, wt_np, ct_np))
in_pt, wt_pt, ct_pt = map(
lambda x: torch.from_numpy(x.transpose(0, 3, 1, 2)).to("cpu"),
(in_np, wt_np, ct_np),
)
def f(a, b):
return mx.conv2d(
a,
b,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
_, outs_mx = mx.vjp(
f,
[
in_mx,
wt_mx,
],
[
ct_mx,
],
)
pt_grad_in = F.grad.conv1d_input(
in_pt.shape,
wt_pt,
ct_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
pt_grad_wt = F.grad.conv1d_weight(
in_pt,
wt_pt.shape,
ct_pt,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
)
pt_grad_in = torch.permute(pt_grad_in, (0, 2, 3, 1)).numpy()
pt_grad_wt = torch.permute(pt_grad_wt, (0, 2, 3, 1)).numpy()
mx_grad_in, mx_grad_wt = outs_mx
self.assertListEqual(list(pt_grad_in.shape), mx_grad_in.shape)
self.assertListEqual(list(in_mx.shape), mx_grad_in.shape)
self.assertTrue(np.allclose(pt_grad_in, mx_grad_in, atol=atol))
self.assertListEqual(list(pt_grad_wt.shape), mx_grad_wt.shape)
self.assertListEqual(list(wt_mx.shape), mx_grad_wt.shape)
self.assertTrue(np.allclose(pt_grad_wt, mx_grad_wt, atol=atol))
for dtype in ("float32",):
for N, C, O in (
(1, 1, 1),
(1, 6, 1),
(1, 1, 6),
(4, 32, 64),
):
for idim, kdim, stride, padding in (
((1, 1), (1, 1), (1, 1), (0, 0)),
((3, 3), (3, 1), (1, 1), (0, 0)),
((31, 31), (5, 5), (5, 5), (2, 2)),
):
run_conv2D_grad(N, C, O, idim, kdim, stride, padding, dtype=dtype)
if __name__ == "__main__":
unittest.main()