mlx/mlx/backend/cpu/primitives.cpp
Awni Hannun af1b725fda
Fix a couple of slicing bugs (#1827)
* fix a few bugs

* fix conv grad

* speedup test

* comment
2025-02-05 19:50:08 -08:00

390 lines
12 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <algorithm>
#include <cassert>
#include <cmath>
#include <numeric>
#include <sstream>
#include "mlx/allocator.h"
#include "mlx/backend/common/load.h"
#include "mlx/backend/common/slicing.h"
#include "mlx/backend/common/utils.h"
#include "mlx/backend/cpu/arange.h"
#include "mlx/backend/cpu/copy.h"
#include "mlx/backend/cpu/threefry.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
void reshape(const array& in, array& out) {
auto [copy_necessary, out_strides] = prepare_reshape(in, out);
if (copy_necessary) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
copy_inplace(in, out, CopyType::General);
} else {
shared_buffer_reshape(in, out_strides, out);
}
}
int64_t compute_dynamic_offset(
const array& indices,
const Strides& strides,
const std::vector<int>& axes) {
auto compute_offset = [&strides, &axes](const auto* indices) {
int64_t offset = 0;
for (int i = 0; i < axes.size(); ++i) {
offset += indices[i] * strides[axes[i]];
}
return offset;
};
switch (indices.dtype()) {
case int8:
case uint8:
return compute_offset(indices.data<uint8_t>());
case int16:
case uint16:
return compute_offset(indices.data<uint16_t>());
case int32:
case uint32:
return compute_offset(indices.data<uint32_t>());
case int64:
case uint64:
return compute_offset(indices.data<uint64_t>());
default:
throw std::runtime_error("Invalid indices type.");
}
}
void AsStrided::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
}
void Broadcast::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
}
void BroadcastAxes::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
}
void Copy::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
}
void CustomTransforms::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
eval(inputs, outputs);
}
void Depends::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
eval(inputs, outputs);
}
void ExpandDims::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
}
void NumberOfElements::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
}
void Slice::eval_cpu(const std::vector<array>& inputs, array& out) {
slice(inputs[0], out, start_indices_, strides_);
}
void Split::eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
eval(inputs, outputs);
}
void Squeeze::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
}
void StopGradient::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
}
void Transpose::eval_cpu(const std::vector<array>& inputs, array& out) {
eval(inputs, out);
}
void Arange::eval_cpu(const std::vector<array>& inputs, array& out) {
arange(inputs, out, start_, step_);
}
void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
CopyType ctype = in.flags().contiguous ? CopyType::Vector : CopyType::General;
copy(in, out, ctype);
}
void Concatenate::eval_cpu(const std::vector<array>& inputs, array& out) {
std::vector<int> sizes;
sizes.push_back(0);
for (auto& p : inputs) {
sizes.push_back(p.shape(axis_));
}
std::partial_sum(sizes.cbegin(), sizes.cend(), sizes.begin());
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto strides = out.strides();
auto flags = out.flags();
flags.row_contiguous = false;
flags.col_contiguous = false;
flags.contiguous = false;
for (int i = 0; i < inputs.size(); i++) {
array out_slice(inputs[i].shape(), out.dtype(), nullptr, {});
size_t data_offset = strides[axis_] * sizes[i];
out_slice.copy_shared_buffer(
out, strides, flags, out_slice.size(), data_offset);
copy_inplace(inputs[i], out_slice, CopyType::GeneralGeneral);
}
}
void Contiguous::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.flags().row_contiguous ||
(allow_col_major_ && in.flags().col_contiguous)) {
out.copy_shared_buffer(in);
} else {
copy(in, out, CopyType::General);
}
}
void Flatten::eval_cpu(const std::vector<array>& inputs, array& out) {
reshape(inputs[0], out);
}
void Unflatten::eval_cpu(const std::vector<array>& inputs, array& out) {
reshape(inputs[0], out);
}
void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
assert(in.dtype() == out.dtype());
CopyType ctype;
if (in.data_size() == 1) {
ctype = CopyType::Scalar;
} else if (in.flags().contiguous) {
ctype = CopyType::Vector;
} else {
ctype = CopyType::General;
}
copy(in, out, ctype);
}
void Load::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 0);
out.set_data(allocator::malloc_or_wait(out.nbytes()));
load(out, offset_, reader_, swap_endianness_);
}
void Pad::eval_cpu(const std::vector<array>& inputs, array& out) {
// Inputs must be base input array and scalar val array
assert(inputs.size() == 2);
auto& in = inputs[0];
auto& val = inputs[1];
// Padding value must be a scalar
assert(val.size() == 1);
// Padding value, input and output must be of the same type
assert(val.dtype() == in.dtype() && in.dtype() == out.dtype());
// Fill output with val
copy(val, out, CopyType::Scalar);
// Find offset for start of input values
size_t data_offset = 0;
for (int i = 0; i < axes_.size(); i++) {
auto ax = axes_[i] < 0 ? out.ndim() + axes_[i] : axes_[i];
data_offset += out.strides()[ax] * low_pad_size_[i];
}
// Extract slice from output where input will be pasted
array out_slice(in.shape(), out.dtype(), nullptr, {});
out_slice.copy_shared_buffer(
out, out.strides(), out.flags(), out_slice.size(), data_offset);
// Copy input values into the slice
copy_inplace(in, out_slice, CopyType::GeneralGeneral);
}
void RandomBits::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
// keys has shape (N1, ..., NK, 2)
// out has shape (N1, ..., NK, M1, M2, ...)
auto& keys = inputs[0];
size_t num_keys = keys.size() / 2;
size_t elems_per_key = out.size() / num_keys;
size_t bytes_per_key = out.itemsize() * elems_per_key;
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto kptr = inputs[0].data<uint32_t>();
auto cptr = out.data<char>();
size_t out_skip = (bytes_per_key + 4 - 1) / 4;
auto half_size = out_skip / 2;
bool even = out_skip % 2 == 0;
for (int i = 0; i < num_keys; ++i, cptr += bytes_per_key) {
auto ptr = reinterpret_cast<uint32_t*>(cptr);
// Get ith key
auto kidx = 2 * i;
auto k1_elem = elem_to_loc(kidx, keys.shape(), keys.strides());
auto k2_elem = elem_to_loc(kidx + 1, keys.shape(), keys.strides());
auto key = std::make_pair(kptr[k1_elem], kptr[k2_elem]);
std::pair<uintptr_t, uintptr_t> count{0, half_size + !even};
for (; count.first + 1 < half_size; count.first++, count.second++) {
std::tie(ptr[count.first], ptr[count.second]) =
random::threefry2x32_hash(key, count);
}
if (count.first < half_size) {
auto rb = random::threefry2x32_hash(key, count);
ptr[count.first++] = rb.first;
if (bytes_per_key % 4 > 0) {
std::copy(
reinterpret_cast<char*>(&rb.second),
reinterpret_cast<char*>(&rb.second) + bytes_per_key % 4,
cptr + 4 * count.second);
} else {
ptr[count.second] = rb.second;
}
}
if (!even) {
count.second = 0;
ptr[half_size] = random::threefry2x32_hash(key, count).first;
}
}
}
void Reshape::eval_cpu(const std::vector<array>& inputs, array& out) {
reshape(inputs[0], out);
}
void DynamicSlice::eval_cpu(const std::vector<array>& inputs, array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto i_offset = compute_dynamic_offset(inputs[1], in.strides(), axes_);
copy_inplace(
/* const array& src = */ in,
/* array& dst = */ out,
/* const Shape& data_shape = */ out.shape(),
/* const Strides& i_strides = */ in.strides(),
/* const Strides& o_strides = */ out.strides(),
/* int64_t i_offset = */ i_offset,
/* int64_t o_offset = */ 0,
/* CopyType ctype = */ CopyType::GeneralGeneral);
}
void DynamicSliceUpdate::eval_cpu(
const std::vector<array>& inputs,
array& out) {
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
auto& upd = inputs[1];
// Copy or move src to dst
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype);
auto o_offset = compute_dynamic_offset(inputs[2], out.strides(), axes_);
copy_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
/* const std::vector<stride_t>& i_strides = */ upd.strides(),
/* const std::vector<stride_t>& o_strides = */ out.strides(),
/* int64_t i_offset = */ 0,
/* int64_t o_offset = */ o_offset,
/* CopyType ctype = */ CopyType::GeneralGeneral);
}
void SliceUpdate::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
if (out.size() == 0) {
out.set_data(nullptr);
return;
}
auto& in = inputs[0];
auto& upd = inputs[1];
if (upd.size() == 0) {
out.copy_shared_buffer(in);
return;
}
// Check if materialization is needed
auto ctype = in.flags().contiguous && in.size() == in.data_size()
? CopyType::Vector
: CopyType::General;
copy(in, out, in.data_size() == 1 ? CopyType::Scalar : ctype);
// Calculate out strides, initial offset and if copy needs to be made
auto [data_offset, out_strides] =
prepare_slice(out, start_indices_, strides_);
// Do copy
copy_inplace(
/* const array& src = */ upd,
/* array& dst = */ out,
/* const std::vector<int>& data_shape = */ upd.shape(),
/* const std::vector<stride_t>& i_strides = */ upd.strides(),
/* const std::vector<stride_t>& o_strides = */ out_strides,
/* int64_t i_offset = */ 0,
/* int64_t o_offset = */ data_offset,
/* CopyType ctype = */ CopyType::GeneralGeneral);
}
void View::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
auto ibytes = size_of(in.dtype());
auto obytes = size_of(out.dtype());
// Conditions for buffer copying (disjunction):
// - type size is the same
// - type size is smaller and the last axis is contiguous
// - the entire array is row contiguous
if (ibytes == obytes || (obytes < ibytes && in.strides().back() == 1) ||
in.flags().row_contiguous) {
auto strides = in.strides();
for (int i = 0; i < static_cast<int>(strides.size()) - 1; ++i) {
strides[i] *= ibytes;
strides[i] /= obytes;
}
out.copy_shared_buffer(
in, strides, in.flags(), in.data_size() * ibytes / obytes);
} else {
auto tmp = array(
in.shape(), in.dtype() == bool_ ? uint8 : in.dtype(), nullptr, {});
tmp.set_data(allocator::malloc_or_wait(tmp.nbytes()));
if (in.dtype() == bool_) {
auto in_tmp = array(in.shape(), uint8, nullptr, {});
in_tmp.copy_shared_buffer(in);
copy_inplace(in_tmp, tmp, CopyType::General);
} else {
copy_inplace(in, tmp, CopyType::General);
}
auto flags = out.flags();
flags.contiguous = true;
flags.row_contiguous = true;
auto max_dim = std::max_element(out.shape().begin(), out.shape().end());
flags.col_contiguous = out.size() <= 1 || out.size() == *max_dim;
out.move_shared_buffer(tmp, out.strides(), flags, out.size());
}
}
} // namespace mlx::core