mlx/python/src/array.cpp
2024-09-25 12:07:13 -07:00

1334 lines
42 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <cstdint>
#include <cstring>
#include <sstream>
#include <nanobind/ndarray.h>
#include <nanobind/stl/complex.h>
#include <nanobind/stl/optional.h>
#include <nanobind/stl/string.h>
#include <nanobind/stl/variant.h>
#include <nanobind/stl/vector.h>
#include <nanobind/typing.h>
#include "mlx/backend/metal/metal.h"
#include "python/src/buffer.h"
#include "python/src/convert.h"
#include "python/src/indexing.h"
#include "python/src/utils.h"
#include "mlx/device.h"
#include "mlx/ops.h"
#include "mlx/transforms.h"
#include "mlx/utils.h"
namespace nb = nanobind;
using namespace nb::literals;
using namespace mlx::core;
class ArrayAt {
public:
ArrayAt(array x) : x_(std::move(x)) {}
ArrayAt& set_indices(nb::object indices) {
indices_ = indices;
return *this;
}
array add(const ScalarOrArray& v) {
return mlx_add_item(x_, indices_, v);
}
array subtract(const ScalarOrArray& v) {
return mlx_subtract_item(x_, indices_, v);
}
array multiply(const ScalarOrArray& v) {
return mlx_multiply_item(x_, indices_, v);
}
array divide(const ScalarOrArray& v) {
return mlx_divide_item(x_, indices_, v);
}
array maximum(const ScalarOrArray& v) {
return mlx_maximum_item(x_, indices_, v);
}
array minimum(const ScalarOrArray& v) {
return mlx_minimum_item(x_, indices_, v);
}
private:
array x_;
nb::object indices_;
};
class ArrayPythonIterator {
public:
ArrayPythonIterator(array x) : idx_(0), x_(std::move(x)) {
if (x_.shape(0) > 0 && x_.shape(0) < 10) {
splits_ = split(x_, x_.shape(0));
}
}
array next() {
if (idx_ >= x_.shape(0)) {
throw nb::stop_iteration();
}
if (idx_ >= 0 && idx_ < splits_.size()) {
return squeeze(splits_[idx_++], 0);
}
return *(x_.begin() + idx_++);
}
private:
int idx_;
array x_;
std::vector<array> splits_;
};
void init_array(nb::module_& m) {
// Set Python print formatting options
mlx::core::global_formatter.capitalize_bool = true;
// Types
nb::class_<Dtype>(
m,
"Dtype",
R"pbdoc(
An object to hold the type of a :class:`array`.
See the :ref:`list of types <data_types>` for more details
on available data types.
)pbdoc")
.def_prop_ro(
"size", &Dtype::size, R"pbdoc(Size of the type in bytes.)pbdoc")
.def(
"__repr__",
[](const Dtype& t) {
std::ostringstream os;
os << "mlx.core.";
os << t;
return os.str();
})
.def(
"__eq__",
[](const Dtype& t, const nb::object& other) {
return nb::isinstance<Dtype>(other) && t == nb::cast<Dtype>(other);
})
.def("__hash__", [](const Dtype& t) {
return static_cast<int64_t>(t.val());
});
m.attr("bool_") = nb::cast(bool_);
m.attr("uint8") = nb::cast(uint8);
m.attr("uint16") = nb::cast(uint16);
m.attr("uint32") = nb::cast(uint32);
m.attr("uint64") = nb::cast(uint64);
m.attr("int8") = nb::cast(int8);
m.attr("int16") = nb::cast(int16);
m.attr("int32") = nb::cast(int32);
m.attr("int64") = nb::cast(int64);
m.attr("float16") = nb::cast(float16);
m.attr("float32") = nb::cast(float32);
m.attr("bfloat16") = nb::cast(bfloat16);
m.attr("complex64") = nb::cast(complex64);
nb::enum_<Dtype::Category>(
m,
"DtypeCategory",
R"pbdoc(
Type to hold categories of :class:`dtypes <Dtype>`.
* :attr:`~mlx.core.generic`
* :ref:`bool_ <data_types>`
* :attr:`~mlx.core.number`
* :attr:`~mlx.core.integer`
* :attr:`~mlx.core.unsignedinteger`
* :ref:`uint8 <data_types>`
* :ref:`uint16 <data_types>`
* :ref:`uint32 <data_types>`
* :ref:`uint64 <data_types>`
* :attr:`~mlx.core.signedinteger`
* :ref:`int8 <data_types>`
* :ref:`int32 <data_types>`
* :ref:`int64 <data_types>`
* :attr:`~mlx.core.inexact`
* :attr:`~mlx.core.floating`
* :ref:`float16 <data_types>`
* :ref:`bfloat16 <data_types>`
* :ref:`float32 <data_types>`
* :attr:`~mlx.core.complexfloating`
* :ref:`complex64 <data_types>`
See also :func:`~mlx.core.issubdtype`.
)pbdoc")
.value("complexfloating", complexfloating)
.value("floating", floating)
.value("inexact", inexact)
.value("signedinteger", signedinteger)
.value("unsignedinteger", unsignedinteger)
.value("integer", integer)
.value("number", number)
.value("generic", generic)
.export_values();
nb::class_<ArrayAt>(
m,
"ArrayAt",
R"pbdoc(
A helper object to apply updates at specific indices.
)pbdoc")
.def(
nb::init<const array&>(),
"x"_a,
nb::sig("def __init__(self, x: array)"))
.def("__getitem__", &ArrayAt::set_indices, "indices"_a.none())
.def("add", &ArrayAt::add, "value"_a)
.def("subtract", &ArrayAt::subtract, "value"_a)
.def("multiply", &ArrayAt::multiply, "value"_a)
.def("divide", &ArrayAt::divide, "value"_a)
.def("maximum", &ArrayAt::maximum, "value"_a)
.def("minimum", &ArrayAt::minimum, "value"_a);
nb::class_<ArrayPythonIterator>(
m,
"ArrayIterator",
R"pbdoc(
A helper object to iterate over the 1st dimension of an array.
)pbdoc")
.def(
nb::init<const array&>(),
"x"_a,
nb::sig("def __init__(self, x: array)"))
.def("__next__", &ArrayPythonIterator::next)
.def("__iter__", [](const ArrayPythonIterator& it) { return it; });
// Install buffer protocol functions
PyType_Slot array_slots[] = {
{Py_bf_getbuffer, (void*)getbuffer},
{Py_bf_releasebuffer, (void*)releasebuffer},
{0, nullptr}};
nb::class_<array>(
m,
"array",
R"pbdoc(An N-dimensional array object.)pbdoc",
nb::type_slots(array_slots),
nb::is_weak_referenceable())
.def(
"__init__",
[](array* aptr, ArrayInitType v, std::optional<Dtype> t) {
new (aptr) array(create_array(v, t));
},
"val"_a,
"dtype"_a = nb::none(),
nb::sig(
"def __init__(self: array, val: Union[scalar, list, tuple, numpy.ndarray, array], dtype: Optional[Dtype] = None)"))
.def_prop_ro(
"size", &array::size, R"pbdoc(Number of elements in the array.)pbdoc")
.def_prop_ro("ndim", &array::ndim, R"pbdoc(The array's dimension.)pbdoc")
.def_prop_ro(
"itemsize",
&array::itemsize,
R"pbdoc(The size of the array's datatype in bytes.)pbdoc")
.def_prop_ro(
"nbytes",
&array::nbytes,
R"pbdoc(The number of bytes in the array.)pbdoc")
.def_prop_ro(
"shape",
[](const array& a) { return nb::tuple(nb::cast(a.shape())); },
R"pbdoc(
The shape of the array as a Python tuple.
Returns:
tuple(int): A tuple containing the sizes of each dimension.
)pbdoc")
.def_prop_ro(
"dtype",
&array::dtype,
R"pbdoc(
The array's :class:`Dtype`.
)pbdoc")
.def(
"item",
&to_scalar,
R"pbdoc(
Access the value of a scalar array.
Returns:
Standard Python scalar.
)pbdoc")
.def(
"tolist",
&tolist,
R"pbdoc(
Convert the array to a Python :class:`list`.
Returns:
list: The Python list.
If the array is a scalar then a standard Python scalar is returned.
If the array has more than one dimension then the result is a nested
list of lists.
The value type of the list corresponding to the last dimension is either
``bool``, ``int`` or ``float`` depending on the ``dtype`` of the array.
)pbdoc")
.def(
"astype",
&astype,
"dtype"_a,
"stream"_a = nb::none(),
R"pbdoc(
Cast the array to a specified type.
Args:
dtype (Dtype): Type to which the array is cast.
stream (Stream): Stream (or device) for the operation.
Returns:
array: The array with type ``dtype``.
)pbdoc")
.def(
"__array_namespace__",
[](const array& a, const std::optional<std::string>& api_version) {
if (api_version) {
throw std::invalid_argument(
"Explicitly specifying api_version is not yet implemented.");
}
return nb::module_::import_("mlx.core");
},
"api_version"_a = nb::none(),
R"pbdoc(
Returns an object that has all the array API functions on it.
See the `Python array API <https://data-apis.org/array-api/latest/index.html>`_
for more information.
Args:
api_version (str, optional): String representing the version
of the array API spec to return. Default: ``None``.
Returns:
out (Any): An object representing the array API namespace.
)pbdoc")
.def("__getitem__", mlx_get_item, nb::arg().none())
.def("__setitem__", mlx_set_item, nb::arg().none(), nb::arg())
.def_prop_ro(
"at",
[](const array& a) { return ArrayAt(a); },
R"pbdoc(
Used to apply updates at the given indices.
.. note::
Regular in-place updates map to assignment. For instance ``x[idx] += y``
maps to ``x[idx] = x[idx] + y``. As a result, assigning to the
same index ignores all but one update. Using ``x.at[idx].add(y)``
will correctly apply all updates to all indices.
.. list-table::
:header-rows: 1
* - array.at syntax
- In-place syntax
* - ``x = x.at[idx].add(y)``
- ``x[idx] += y``
* - ``x = x.at[idx].subtract(y)``
- ``x[idx] -= y``
* - ``x = x.at[idx].multiply(y)``
- ``x[idx] *= y``
* - ``x = x.at[idx].divide(y)``
- ``x[idx] /= y``
* - ``x = x.at[idx].maximum(y)``
- ``x[idx] = mx.maximum(x[idx], y)``
* - ``x = x.at[idx].minimum(y)``
- ``x[idx] = mx.minimum(x[idx], y)``
Example:
>>> a = mx.array([0, 0])
>>> idx = mx.array([0, 1, 0, 1])
>>> a[idx] += 1
>>> a
array([1, 1], dtype=int32)
>>>
>>> a = mx.array([0, 0])
>>> a.at[idx].add(1)
array([2, 2], dtype=int32)
)pbdoc")
.def(
"__len__",
[](const array& a) {
if (a.ndim() == 0) {
throw nb::type_error("len() 0-dimensional array.");
}
return a.shape(0);
})
.def("__iter__", [](const array& a) { return ArrayPythonIterator(a); })
.def("__getstate__", &mlx_to_np_array)
.def(
"__setstate__",
[](array& arr,
const nb::ndarray<nb::ro, nb::c_contig, nb::device::cpu>& state) {
new (&arr) array(nd_array_to_mlx(state, std::nullopt));
})
.def("__dlpack__", [](const array& a) { return mlx_to_dlpack(a); })
.def(
"__dlpack_device__",
[](const array& a) {
if (metal::is_available()) {
// Metal device is available
return nb::make_tuple(8, 0);
} else {
// CPU device
return nb::make_tuple(1, 0);
}
})
.def("__copy__", [](const array& self) { return array(self); })
.def(
"__deepcopy__",
[](const array& self, nb::dict) { return array(self); },
"memo"_a)
.def(
"__add__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("addition", v);
}
auto b = to_array(v, a.dtype());
return add(a, b);
},
"other"_a)
.def(
"__iadd__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace addition", v);
}
a.overwrite_descriptor(add(a, to_array(v, a.dtype())));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__radd__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("addition", v);
}
return add(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__sub__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("subtraction", v);
}
return subtract(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__isub__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace subtraction", v);
}
a.overwrite_descriptor(subtract(a, to_array(v, a.dtype())));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__rsub__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("subtraction", v);
}
return subtract(to_array(v, a.dtype()), a);
},
"other"_a)
.def(
"__mul__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("multiplication", v);
}
return multiply(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__imul__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace multiplication", v);
}
a.overwrite_descriptor(multiply(a, to_array(v, a.dtype())));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__rmul__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("multiplication", v);
}
return multiply(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__truediv__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("division", v);
}
return divide(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__itruediv__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace division", v);
}
if (!issubdtype(a.dtype(), inexact)) {
throw std::invalid_argument(
"In place division cannot cast to non-floating point type.");
}
a.overwrite_descriptor(divide(a, to_array(v, a.dtype())));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__rtruediv__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("division", v);
}
return divide(to_array(v, a.dtype()), a);
},
"other"_a)
.def(
"__div__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("division", v);
}
return divide(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__rdiv__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("division", v);
}
return divide(to_array(v, a.dtype()), a);
},
"other"_a)
.def(
"__floordiv__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("floor division", v);
}
return floor_divide(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__ifloordiv__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace floor division", v);
}
a.overwrite_descriptor(floor_divide(a, to_array(v, a.dtype())));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__rfloordiv__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("floor division", v);
}
auto b = to_array(v, a.dtype());
return floor_divide(b, a);
},
"other"_a)
.def(
"__mod__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("modulus", v);
}
return remainder(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__imod__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace modulus", v);
}
a.overwrite_descriptor(remainder(a, to_array(v, a.dtype())));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__rmod__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("modulus", v);
}
return remainder(to_array(v, a.dtype()), a);
},
"other"_a)
.def(
"__eq__",
[](const array& a,
const ScalarOrArray& v) -> std::variant<array, bool> {
if (!is_comparable_with_array(v)) {
return false;
}
return equal(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__lt__",
[](const array& a, const ScalarOrArray v) -> array {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("less than", v);
}
return less(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__le__",
[](const array& a, const ScalarOrArray v) -> array {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("less than or equal", v);
}
return less_equal(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__gt__",
[](const array& a, const ScalarOrArray v) -> array {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("greater than", v);
}
return greater(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__ge__",
[](const array& a, const ScalarOrArray v) -> array {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("greater than or equal", v);
}
return greater_equal(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__ne__",
[](const array& a,
const ScalarOrArray v) -> std::variant<array, bool> {
if (!is_comparable_with_array(v)) {
return true;
}
return not_equal(a, to_array(v, a.dtype()));
},
"other"_a)
.def("__neg__", [](const array& a) { return -a; })
.def("__bool__", [](array& a) { return nb::bool_(to_scalar(a)); })
.def(
"__repr__",
[](array& a) {
nb::gil_scoped_release nogil;
std::ostringstream os;
os << a;
return os.str();
})
.def(
"__matmul__",
[](const array& a, array& other) { return matmul(a, other); },
"other"_a)
.def(
"__imatmul__",
[](array& a, array& other) -> array& {
a.overwrite_descriptor(matmul(a, other));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__pow__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("power", v);
}
return power(a, to_array(v, a.dtype()));
},
"other"_a)
.def(
"__rpow__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("power", v);
}
return power(to_array(v, a.dtype()), a);
},
"other"_a)
.def(
"__ipow__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace power", v);
}
a.overwrite_descriptor(power(a, to_array(v, a.dtype())));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__invert__",
[](const array& a) {
if (issubdtype(a.dtype(), inexact)) {
throw std::invalid_argument(
"Floating point types not allowed with or bitwise inversion.");
}
if (a.dtype() != bool_) {
throw std::invalid_argument(
"Bitwise inversion not yet supported for integer types.");
}
return logical_not(a);
})
.def(
"__and__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("bitwise and", v);
}
auto b = to_array(v, a.dtype());
if (issubdtype(a.dtype(), inexact) ||
issubdtype(b.dtype(), inexact)) {
throw std::invalid_argument(
"Floating point types not allowed with bitwise and.");
}
return bitwise_and(a, b);
},
"other"_a)
.def(
"__iand__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace bitwise and", v);
}
auto b = to_array(v, a.dtype());
if (issubdtype(a.dtype(), inexact) ||
issubdtype(b.dtype(), inexact)) {
throw std::invalid_argument(
"Floating point types not allowed with bitwise and.");
}
a.overwrite_descriptor(bitwise_and(a, b));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__or__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("bitwise or", v);
}
auto b = to_array(v, a.dtype());
if (issubdtype(a.dtype(), inexact) ||
issubdtype(b.dtype(), inexact)) {
throw std::invalid_argument(
"Floating point types not allowed with or bitwise or.");
}
return bitwise_or(a, b);
},
"other"_a)
.def(
"__ior__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace bitwise or", v);
}
auto b = to_array(v, a.dtype());
if (issubdtype(a.dtype(), inexact) ||
issubdtype(b.dtype(), inexact)) {
throw std::invalid_argument(
"Floating point types not allowed with or bitwise or.");
}
a.overwrite_descriptor(bitwise_or(a, b));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__lshift__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("left shift", v);
}
auto b = to_array(v, a.dtype());
if (issubdtype(a.dtype(), inexact) ||
issubdtype(b.dtype(), inexact)) {
throw std::invalid_argument(
"Floating point types not allowed with left shift.");
}
return left_shift(a, b);
},
"other"_a)
.def(
"__ilshift__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace left shift", v);
}
auto b = to_array(v, a.dtype());
if (issubdtype(a.dtype(), inexact) ||
issubdtype(b.dtype(), inexact)) {
throw std::invalid_argument(
"Floating point types not allowed with or left shift.");
}
a.overwrite_descriptor(left_shift(a, b));
return a;
},
"other"_a,
nb::rv_policy::none)
.def(
"__rshift__",
[](const array& a, const ScalarOrArray v) {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("right shift", v);
}
auto b = to_array(v, a.dtype());
if (issubdtype(a.dtype(), inexact) ||
issubdtype(b.dtype(), inexact)) {
throw std::invalid_argument(
"Floating point types not allowed with right shift.");
}
return right_shift(a, b);
},
"other"_a)
.def(
"__irshift__",
[](array& a, const ScalarOrArray v) -> array& {
if (!is_comparable_with_array(v)) {
throw_invalid_operation("inplace right shift", v);
}
auto b = to_array(v, a.dtype());
if (issubdtype(a.dtype(), inexact) ||
issubdtype(b.dtype(), inexact)) {
throw std::invalid_argument(
"Floating point types not allowed with or right shift.");
}
a.overwrite_descriptor(right_shift(a, b));
return a;
},
"other"_a,
nb::rv_policy::none)
.def("__int__", [](array& a) { return nb::int_(to_scalar(a)); })
.def("__float__", [](array& a) { return nb::float_(to_scalar(a)); })
.def(
"flatten",
[](const array& a,
int start_axis,
int end_axis,
const StreamOrDevice& s) {
return flatten(a, start_axis, end_axis, s);
},
"start_axis"_a = 0,
"end_axis"_a = -1,
nb::kw_only(),
"stream"_a = nb::none(),
R"pbdoc(
See :func:`flatten`.
)pbdoc")
.def(
"reshape",
[](const array& a, nb::args shape_, StreamOrDevice s) {
std::vector<int> shape;
if (!nb::isinstance<int>(shape_[0])) {
shape = nb::cast<std::vector<int>>(shape_[0]);
} else {
shape = nb::cast<std::vector<int>>(shape_);
}
return reshape(a, shape, s);
},
"shape"_a,
"stream"_a = nb::none(),
R"pbdoc(
Equivalent to :func:`reshape` but the shape can be passed either as a
:obj:`tuple` or as separate arguments.
See :func:`reshape` for full documentation.
)pbdoc")
.def(
"squeeze",
[](const array& a, const IntOrVec& v, const StreamOrDevice& s) {
if (std::holds_alternative<std::monostate>(v)) {
return squeeze(a, s);
} else if (auto pv = std::get_if<int>(&v); pv) {
return squeeze(a, *pv, s);
} else {
return squeeze(a, std::get<std::vector<int>>(v), s);
}
},
"axis"_a = nb::none(),
nb::kw_only(),
"stream"_a = nb::none(),
R"pbdoc(
See :func:`squeeze`.
)pbdoc")
.def(
"abs",
&mlx::core::abs,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`abs`.")
.def(
"__abs__", [](const array& a) { return abs(a); }, "See :func:`abs`.")
.def(
"square",
&square,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`square`.")
.def(
"sqrt",
&mlx::core::sqrt,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`sqrt`.")
.def(
"rsqrt",
&rsqrt,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`rsqrt`.")
.def(
"reciprocal",
&reciprocal,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`reciprocal`.")
.def(
"exp",
&mlx::core::exp,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`exp`.")
.def(
"log",
&mlx::core::log,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`log`.")
.def(
"log2",
&mlx::core::log2,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`log2`.")
.def(
"log10",
&mlx::core::log10,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`log10`.")
.def(
"sin",
&mlx::core::sin,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`sin`.")
.def(
"cos",
&mlx::core::cos,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`cos`.")
.def(
"log1p",
&mlx::core::log1p,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`log1p`.")
.def(
"all",
[](const array& a,
const IntOrVec& axis,
bool keepdims,
StreamOrDevice s) {
return all(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
},
"axis"_a = nb::none(),
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`all`.")
.def(
"any",
[](const array& a,
const IntOrVec& axis,
bool keepdims,
StreamOrDevice s) {
return any(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
},
"axis"_a = nb::none(),
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`any`.")
.def(
"moveaxis",
&moveaxis,
"source"_a,
"destination"_a,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`moveaxis`.")
.def(
"swapaxes",
&swapaxes,
"axis1"_a,
"axis2"_a,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`swapaxes`.")
.def(
"transpose",
[](const array& a, nb::args axes_, StreamOrDevice s) {
if (axes_.size() == 0) {
return transpose(a, s);
}
std::vector<int> axes;
if (!nb::isinstance<int>(axes_[0])) {
axes = nb::cast<std::vector<int>>(axes_[0]);
} else {
axes = nb::cast<std::vector<int>>(axes_);
}
return transpose(a, axes, s);
},
"axes"_a,
"stream"_a = nb::none(),
R"pbdoc(
Equivalent to :func:`transpose` but the axes can be passed either as
a tuple or as separate arguments.
See :func:`transpose` for full documentation.
)pbdoc")
.def_prop_ro(
"T",
[](const array& a) { return transpose(a); },
"Equivalent to calling ``self.transpose()`` with no arguments.")
.def(
"sum",
[](const array& a,
const IntOrVec& axis,
bool keepdims,
StreamOrDevice s) {
return sum(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
},
"axis"_a = nb::none(),
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`sum`.")
.def(
"prod",
[](const array& a,
const IntOrVec& axis,
bool keepdims,
StreamOrDevice s) {
return prod(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
},
"axis"_a = nb::none(),
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`prod`.")
.def(
"min",
[](const array& a,
const IntOrVec& axis,
bool keepdims,
StreamOrDevice s) {
return min(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
},
"axis"_a = nb::none(),
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`min`.")
.def(
"max",
[](const array& a,
const IntOrVec& axis,
bool keepdims,
StreamOrDevice s) {
return max(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
},
"axis"_a = nb::none(),
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`max`.")
.def(
"logsumexp",
[](const array& a,
const IntOrVec& axis,
bool keepdims,
StreamOrDevice s) {
return logsumexp(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
},
"axis"_a = nb::none(),
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`logsumexp`.")
.def(
"mean",
[](const array& a,
const IntOrVec& axis,
bool keepdims,
StreamOrDevice s) {
return mean(a, get_reduce_axes(axis, a.ndim()), keepdims, s);
},
"axis"_a = nb::none(),
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`mean`.")
.def(
"std",
[](const array& a,
const IntOrVec& axis,
bool keepdims,
int ddof,
StreamOrDevice s) {
return mlx::core::std(
a, get_reduce_axes(axis, a.ndim()), keepdims, ddof, s);
},
"axis"_a = nb::none(),
"keepdims"_a = false,
"ddof"_a = 0,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`std`.")
.def(
"var",
[](const array& a,
const IntOrVec& axis,
bool keepdims,
int ddof,
StreamOrDevice s) {
return var(a, get_reduce_axes(axis, a.ndim()), keepdims, ddof, s);
},
"axis"_a = nb::none(),
"keepdims"_a = false,
"ddof"_a = 0,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`var`.")
.def(
"split",
[](const array& a,
const std::variant<int, std::vector<int>>& indices_or_sections,
int axis,
StreamOrDevice s) {
if (auto pv = std::get_if<int>(&indices_or_sections); pv) {
return split(a, *pv, axis, s);
} else {
return split(
a, std::get<std::vector<int>>(indices_or_sections), axis, s);
}
},
"indices_or_sections"_a,
"axis"_a = 0,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`split`.")
.def(
"argmin",
[](const array& a,
std::optional<int> axis,
bool keepdims,
StreamOrDevice s) {
if (axis) {
return argmin(a, *axis, keepdims, s);
} else {
return argmin(a, keepdims, s);
}
},
"axis"_a = std::nullopt,
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`argmin`.")
.def(
"argmax",
[](const array& a,
std::optional<int> axis,
bool keepdims,
StreamOrDevice s) {
if (axis) {
return argmax(a, *axis, keepdims, s);
} else {
return argmax(a, keepdims, s);
}
},
"axis"_a = nb::none(),
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`argmax`.")
.def(
"cumsum",
[](const array& a,
std::optional<int> axis,
bool reverse,
bool inclusive,
StreamOrDevice s) {
if (axis) {
return cumsum(a, *axis, reverse, inclusive, s);
} else {
// TODO: Implement that in the C++ API as well. See concatenate
// above.
return cumsum(reshape(a, {-1}, s), 0, reverse, inclusive, s);
}
},
"axis"_a = nb::none(),
nb::kw_only(),
"reverse"_a = false,
"inclusive"_a = true,
"stream"_a = nb::none(),
"See :func:`cumsum`.")
.def(
"cumprod",
[](const array& a,
std::optional<int> axis,
bool reverse,
bool inclusive,
StreamOrDevice s) {
if (axis) {
return cumprod(a, *axis, reverse, inclusive, s);
} else {
// TODO: Implement that in the C++ API as well. See concatenate
// above.
return cumprod(reshape(a, {-1}, s), 0, reverse, inclusive, s);
}
},
"axis"_a = nb::none(),
nb::kw_only(),
"reverse"_a = false,
"inclusive"_a = true,
"stream"_a = nb::none(),
"See :func:`cumprod`.")
.def(
"cummax",
[](const array& a,
std::optional<int> axis,
bool reverse,
bool inclusive,
StreamOrDevice s) {
if (axis) {
return cummax(a, *axis, reverse, inclusive, s);
} else {
// TODO: Implement that in the C++ API as well. See concatenate
// above.
return cummax(reshape(a, {-1}, s), 0, reverse, inclusive, s);
}
},
"axis"_a = nb::none(),
nb::kw_only(),
"reverse"_a = false,
"inclusive"_a = true,
"stream"_a = nb::none(),
"See :func:`cummax`.")
.def(
"cummin",
[](const array& a,
std::optional<int> axis,
bool reverse,
bool inclusive,
StreamOrDevice s) {
if (axis) {
return cummin(a, *axis, reverse, inclusive, s);
} else {
// TODO: Implement that in the C++ API as well. See concatenate
// above.
return cummin(reshape(a, {-1}, s), 0, reverse, inclusive, s);
}
},
"axis"_a = nb::none(),
nb::kw_only(),
"reverse"_a = false,
"inclusive"_a = true,
"stream"_a = nb::none(),
"See :func:`cummin`.")
.def(
"round",
[](const array& a, int decimals, StreamOrDevice s) {
return round(a, decimals, s);
},
"decimals"_a = 0,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`round`.")
.def(
"diagonal",
[](const array& a,
int offset,
int axis1,
int axis2,
StreamOrDevice s) { return diagonal(a, offset, axis1, axis2, s); },
"offset"_a = 0,
"axis1"_a = 0,
"axis2"_a = 1,
"stream"_a = nb::none(),
"See :func:`diagonal`.")
.def(
"diag",
[](const array& a, int k, StreamOrDevice s) { return diag(a, k, s); },
"k"_a = 0,
nb::kw_only(),
"stream"_a = nb::none(),
R"pbdoc(
Extract a diagonal or construct a diagonal matrix.
)pbdoc")
.def(
"conj",
[](const array& a, StreamOrDevice s) {
return mlx::core::conjugate(to_array(a), s);
},
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`conj`.")
.def(
"view",
[](const ScalarOrArray& a, const Dtype& dtype, StreamOrDevice s) {
return view(to_array(a), dtype, s);
},
"dtype"_a,
nb::kw_only(),
"stream"_a = nb::none(),
"See :func:`view`.");
}