mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-25 18:11:15 +08:00
422 lines
15 KiB
ReStructuredText
422 lines
15 KiB
ReStructuredText
Custom Metal Kernels
|
|
====================
|
|
|
|
MLX supports writing custom Metal kernels through the Python and C++ APIs.
|
|
|
|
Simple Example
|
|
--------------
|
|
|
|
Let's write a custom kernel that computes ``exp`` elementwise:
|
|
|
|
.. code-block:: python
|
|
|
|
def exp_elementwise(a: mx.array):
|
|
source = """
|
|
uint elem = thread_position_in_grid.x;
|
|
T tmp = inp[elem];
|
|
out[elem] = metal::exp(tmp);
|
|
"""
|
|
|
|
kernel = mx.fast.metal_kernel(
|
|
name="myexp",
|
|
input_names=["inp"],
|
|
output_names=["out"],
|
|
source=source,
|
|
)
|
|
outputs = kernel(
|
|
inputs=[a],
|
|
template=[("T", mx.float32)],
|
|
grid=(a.size, 1, 1),
|
|
threadgroup=(256, 1, 1),
|
|
output_shapes=[a.shape],
|
|
output_dtypes=[a.dtype],
|
|
)
|
|
return outputs[0]
|
|
|
|
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
|
|
b = exp_elementwise(a)
|
|
assert mx.allclose(b, mx.exp(a))
|
|
|
|
.. note::
|
|
We are only required to pass the body of the Metal kernel in ``source``.
|
|
|
|
The full function signature will be generated using:
|
|
|
|
* The shapes/dtypes of ``inputs``
|
|
In the above, ``a`` is an ``mx.array`` of type ``mx.float16`` and we pass it with the key ``inp``
|
|
so we will add ``const device float16_t* inp`` to the signature.
|
|
``inp_shape``, ``inp_strides`` and ``inp_ndim`` are also added for convenience if they are present
|
|
in ``source``.
|
|
* The list of ``output_dtypes``
|
|
In the above, ``out`` is an ``mx.array`` of type ``mx.float16``
|
|
so we add ``device float16_t* out``.
|
|
* Template parameters passed using ``template``
|
|
In the above, ``template=[("T", mx.float32)]`` adds a template of ``template <typename T>`` to the function
|
|
and instantiates the template with ``custom_kernel_myexp_float<float>``.
|
|
Template parameters can be ``mx.core.Dtype``, ``int`` or ``bool``.
|
|
* Metal attributes used in ``source`` such as ``[[thread_position_in_grid]]``
|
|
These will be added as function arguments.
|
|
All the attributes defined in Table 5.8 of the `Metal Shading Language Specification <https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf>`_ are supported.
|
|
|
|
Putting this all together, the generated function signature for ``myexp`` is as follows:
|
|
|
|
.. code-block:: cpp
|
|
|
|
template <typename T>
|
|
[[kernel]] void custom_kernel_myexp_float(
|
|
const device float16_t* inp [[buffer(0)]],
|
|
device float16_t* out [[buffer(1)]],
|
|
uint3 thread_position_in_grid [[thread_position_in_grid]]) {
|
|
|
|
uint elem = thread_position_in_grid.x;
|
|
T tmp = inp[elem];
|
|
out[elem] = metal::exp(tmp);
|
|
|
|
}
|
|
|
|
template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;
|
|
|
|
Passing ``verbose=True`` to ``mx.fast.metal_kernel.__call__`` will print the generated code for debugging purposes.
|
|
|
|
Using Shape/Strides
|
|
-------------------
|
|
|
|
``mx.fast.metal_kernel`` supports an argument ``ensure_row_contiguous`` which is ``True`` by default.
|
|
This will copy the ``mx.array`` inputs if needed before the kernel is launched to ensure that the memory layout is row contiguous.
|
|
Generally this makes writing the kernel easier, since we don't have to worry about gaps or the ordering of the dims
|
|
when indexing.
|
|
|
|
If we want to avoid this copy, ``metal_kernel`` automatically passes ``a_shape``, ``a_strides`` and ``a_ndim`` for each
|
|
input array ``a`` if any are present in ``source``.
|
|
We can then use MLX's built in indexing utils to fetch the right elements for each thread.
|
|
|
|
Let's convert ``myexp`` above to support arbitrarily strided arrays without relying on a copy from ``ensure_row_contiguous``:
|
|
|
|
.. code-block:: python
|
|
|
|
def exp_elementwise(a: mx.array):
|
|
source = """
|
|
uint elem = thread_position_in_grid.x;
|
|
// Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
|
|
uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
|
|
T tmp = inp[loc];
|
|
// Output arrays are always row contiguous
|
|
out[elem] = metal::exp(tmp);
|
|
"""
|
|
|
|
kernel = mx.fast.metal_kernel(
|
|
name="myexp_strided",
|
|
input_names=["inp"],
|
|
output_names=["out"],
|
|
source=source
|
|
)
|
|
outputs = kernel(
|
|
inputs=[a],
|
|
template=[("T", mx.float32)],
|
|
grid=(a.size, 1, 1),
|
|
threadgroup=(256, 1, 1),
|
|
output_shapes=[a.shape],
|
|
output_dtypes=[a.dtype],
|
|
ensure_row_contiguous=False,
|
|
)
|
|
return outputs[0]
|
|
|
|
a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
|
|
# make non-contiguous
|
|
a = a[::2]
|
|
b = exp_elementwise(a)
|
|
assert mx.allclose(b, mx.exp(a))
|
|
|
|
Complex Example
|
|
-----------------------------
|
|
|
|
Let's implement a more complex example: ``grid_sample`` in ``"bilinear"`` mode.
|
|
|
|
We'll start with the following MLX implementation using standard ops:
|
|
|
|
.. code-block:: python
|
|
|
|
def grid_sample_ref(x, grid):
|
|
N, H_in, W_in, _ = x.shape
|
|
ix = ((grid[..., 0] + 1) * W_in - 1) / 2
|
|
iy = ((grid[..., 1] + 1) * H_in - 1) / 2
|
|
|
|
ix_nw = mx.floor(ix).astype(mx.int32)
|
|
iy_nw = mx.floor(iy).astype(mx.int32)
|
|
|
|
ix_ne = ix_nw + 1
|
|
iy_ne = iy_nw
|
|
|
|
ix_sw = ix_nw
|
|
iy_sw = iy_nw + 1
|
|
|
|
ix_se = ix_nw + 1
|
|
iy_se = iy_nw + 1
|
|
|
|
nw = (ix_se - ix) * (iy_se - iy)
|
|
ne = (ix - ix_sw) * (iy_sw - iy)
|
|
sw = (ix_ne - ix) * (iy - iy_ne)
|
|
se = (ix - ix_nw) * (iy - iy_nw)
|
|
|
|
I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :]
|
|
I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :]
|
|
I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :]
|
|
I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :]
|
|
|
|
mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1)
|
|
mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1)
|
|
mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1)
|
|
mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1)
|
|
|
|
I_nw *= mask_nw[..., None]
|
|
I_ne *= mask_ne[..., None]
|
|
I_sw *= mask_sw[..., None]
|
|
I_se *= mask_se[..., None]
|
|
|
|
output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se
|
|
|
|
return output
|
|
|
|
Now let's use ``mx.custom_function`` together with ``mx.fast.metal_kernel``
|
|
to write a fast GPU kernel for both the forward and backward passes.
|
|
|
|
First we'll implement the forward pass as a fused kernel:
|
|
|
|
.. code-block:: python
|
|
|
|
@mx.custom_function
|
|
def grid_sample(x, grid):
|
|
|
|
assert x.ndim == 4, "`x` must be 4D."
|
|
assert grid.ndim == 4, "`grid` must be 4D."
|
|
|
|
B, _, _, C = x.shape
|
|
_, gN, gM, D = grid.shape
|
|
out_shape = (B, gN, gM, C)
|
|
|
|
assert D == 2, "Last dim of `grid` must be size 2."
|
|
|
|
source = """
|
|
uint elem = thread_position_in_grid.x;
|
|
int H = x_shape[1];
|
|
int W = x_shape[2];
|
|
int C = x_shape[3];
|
|
int gH = grid_shape[1];
|
|
int gW = grid_shape[2];
|
|
|
|
int w_stride = C;
|
|
int h_stride = W * w_stride;
|
|
int b_stride = H * h_stride;
|
|
|
|
uint grid_idx = elem / C * 2;
|
|
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
|
|
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
|
|
|
|
int ix_nw = floor(ix);
|
|
int iy_nw = floor(iy);
|
|
|
|
int ix_ne = ix_nw + 1;
|
|
int iy_ne = iy_nw;
|
|
|
|
int ix_sw = ix_nw;
|
|
int iy_sw = iy_nw + 1;
|
|
|
|
int ix_se = ix_nw + 1;
|
|
int iy_se = iy_nw + 1;
|
|
|
|
T nw = (ix_se - ix) * (iy_se - iy);
|
|
T ne = (ix - ix_sw) * (iy_sw - iy);
|
|
T sw = (ix_ne - ix) * (iy - iy_ne);
|
|
T se = (ix - ix_nw) * (iy - iy_nw);
|
|
|
|
int batch_idx = elem / C / gH / gW * b_stride;
|
|
int channel_idx = elem % C;
|
|
int base_idx = batch_idx + channel_idx;
|
|
|
|
T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride];
|
|
T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride];
|
|
T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride];
|
|
T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride];
|
|
|
|
I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0;
|
|
I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0;
|
|
I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0;
|
|
I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0;
|
|
|
|
out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
|
|
"""
|
|
kernel = mx.fast.metal_kernel(
|
|
name="grid_sample",
|
|
input_names=["x", "grid"],
|
|
output_names=["out"],
|
|
source=source,
|
|
)
|
|
outputs = kernel(
|
|
inputs=[x, grid],
|
|
template=[("T", x.dtype)],
|
|
output_shapes=[out_shape],
|
|
output_dtypes=[x.dtype],
|
|
grid=(np.prod(out_shape), 1, 1),
|
|
threadgroup=(256, 1, 1),
|
|
)
|
|
return outputs[0]
|
|
|
|
For a reasonably sized input such as:
|
|
|
|
.. code-block:: python
|
|
|
|
x.shape = (8, 1024, 1024, 64)
|
|
grid.shape = (8, 256, 256, 2)
|
|
|
|
On an M1 Max, we see a big performance improvement:
|
|
|
|
``55.7ms -> 6.7ms => 8x speed up``
|
|
|
|
Grid Sample VJP
|
|
---------------
|
|
|
|
Since we decorated ``grid_sample`` with ``mx.custom_function``, we can now define
|
|
its custom vjp transform so MLX can differentiate it.
|
|
|
|
The backwards pass requires atomically updating ``x_grad``/``grid_grad`` and so
|
|
requires a few extra ``mx.fast.metal_kernel`` features:
|
|
|
|
* ``init_value=0``
|
|
Initialize all of the kernel's outputs to this value before it runs. This allows us to update only part of the output arrays with the kernel.
|
|
|
|
* ``atomic_outputs=True``
|
|
Designate all of the kernel outputs as ``atomic`` in the function signature.
|
|
This means we can use Metal's ``atomic`` features to simultaneously update the ``x_grad`` and ``grid_grad`` arrays from multiple threadgroups.
|
|
See section 6.15 of the `Metal Shading Language Specification <https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf>`_ for more details.
|
|
|
|
We can then implement the backwards pass as follows:
|
|
|
|
.. code-block:: python
|
|
|
|
@grid_sample.vjp
|
|
def grid_sample_vjp(primals, cotangent, _):
|
|
x, grid = primals
|
|
B, _, _, C = x.shape
|
|
_, gN, gM, D = grid.shape
|
|
|
|
assert D == 2, "Last dim of `grid` must be size 2."
|
|
|
|
source = """
|
|
uint elem = thread_position_in_grid.x;
|
|
int H = x_shape[1];
|
|
int W = x_shape[2];
|
|
int C = x_shape[3];
|
|
// Pad C to the nearest larger simdgroup size multiple
|
|
int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup;
|
|
|
|
int gH = grid_shape[1];
|
|
int gW = grid_shape[2];
|
|
|
|
int w_stride = C;
|
|
int h_stride = W * w_stride;
|
|
int b_stride = H * h_stride;
|
|
|
|
uint grid_idx = elem / C_padded * 2;
|
|
float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
|
|
float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;
|
|
|
|
int ix_nw = floor(ix);
|
|
int iy_nw = floor(iy);
|
|
|
|
int ix_ne = ix_nw + 1;
|
|
int iy_ne = iy_nw;
|
|
|
|
int ix_sw = ix_nw;
|
|
int iy_sw = iy_nw + 1;
|
|
|
|
int ix_se = ix_nw + 1;
|
|
int iy_se = iy_nw + 1;
|
|
|
|
T nw = (ix_se - ix) * (iy_se - iy);
|
|
T ne = (ix - ix_sw) * (iy_sw - iy);
|
|
T sw = (ix_ne - ix) * (iy - iy_ne);
|
|
T se = (ix - ix_nw) * (iy - iy_nw);
|
|
|
|
int batch_idx = elem / C_padded / gH / gW * b_stride;
|
|
int channel_idx = elem % C_padded;
|
|
int base_idx = batch_idx + channel_idx;
|
|
|
|
T gix = T(0);
|
|
T giy = T(0);
|
|
if (channel_idx < C) {
|
|
int cot_index = elem / C_padded * C + channel_idx;
|
|
T cot = cotangent[cot_index];
|
|
if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) {
|
|
int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride;
|
|
atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed);
|
|
|
|
T I_nw = x[offset];
|
|
gix -= I_nw * (iy_se - iy) * cot;
|
|
giy -= I_nw * (ix_se - ix) * cot;
|
|
}
|
|
if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) {
|
|
int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride;
|
|
atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed);
|
|
|
|
T I_ne = x[offset];
|
|
gix += I_ne * (iy_sw - iy) * cot;
|
|
giy -= I_ne * (ix - ix_sw) * cot;
|
|
}
|
|
if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) {
|
|
int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride;
|
|
atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed);
|
|
|
|
T I_sw = x[offset];
|
|
gix -= I_sw * (iy - iy_ne) * cot;
|
|
giy += I_sw * (ix_ne - ix) * cot;
|
|
}
|
|
if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) {
|
|
int offset = base_idx + iy_se * h_stride + ix_se * w_stride;
|
|
atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed);
|
|
|
|
T I_se = x[offset];
|
|
gix += I_se * (iy - iy_nw) * cot;
|
|
giy += I_se * (ix - ix_nw) * cot;
|
|
}
|
|
}
|
|
|
|
T gix_mult = W / 2;
|
|
T giy_mult = H / 2;
|
|
|
|
// Reduce across each simdgroup first.
|
|
// This is much faster than relying purely on atomics.
|
|
gix = simd_sum(gix);
|
|
giy = simd_sum(giy);
|
|
|
|
if (thread_index_in_simdgroup == 0) {
|
|
atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed);
|
|
atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed);
|
|
}
|
|
"""
|
|
kernel = mx.fast.metal_kernel(
|
|
name="grid_sample_grad",
|
|
input_names=["x", "grid", "cotangent"],
|
|
output_names=["x_grad", "grid_grad"],
|
|
source=source,
|
|
atomic_outputs=True,
|
|
)
|
|
# pad the output channels to simd group size
|
|
# so that our `simd_sum`s don't overlap.
|
|
simdgroup_size = 32
|
|
C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
|
|
grid_size = B * gN * gM * C_padded
|
|
outputs = kernel(
|
|
inputs=[x, grid, cotangent],
|
|
template=[("T", x.dtype)],
|
|
output_shapes=[x.shape, grid.shape],
|
|
output_dtypes=[x.dtype, x.dtype],
|
|
grid=(grid_size, 1, 1),
|
|
threadgroup=(256, 1, 1),
|
|
init_value=0,
|
|
)
|
|
return outputs[0], outputs[1]
|
|
|
|
There's an even larger speed up for the vjp:
|
|
|
|
``676.4ms -> 16.7ms => 40x speed up``
|