mirror of
https://github.com/ml-explore/mlx.git
synced 2025-12-16 01:49:05 +08:00
294 lines
7.5 KiB
C++
294 lines
7.5 KiB
C++
// Copyright © 2023 Apple Inc.
|
|
|
|
#pragma once
|
|
#include <cassert>
|
|
|
|
#include "mlx/array.h"
|
|
#include "mlx/backend/common/binary.h"
|
|
#include "mlx/backend/common/utils.h"
|
|
|
|
#include "mlx/backend/cpu/simd/simd.h"
|
|
|
|
namespace mlx::core {
|
|
|
|
template <typename Op>
|
|
struct VectorScalar {
|
|
template <typename T, typename U>
|
|
void operator()(const T* a, const T* b, U* dst, int size) {
|
|
T scalar = *b;
|
|
constexpr int N = simd::max_size<T>;
|
|
while (size >= N) {
|
|
simd::store(dst, Op{}(simd::load<T, N>(a), simd::Simd<T, N>(scalar)));
|
|
dst += N;
|
|
a += N;
|
|
size -= N;
|
|
}
|
|
while (size-- > 0) {
|
|
*dst = Op{}(*a, scalar);
|
|
dst++;
|
|
a++;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Op>
|
|
struct ScalarVector {
|
|
template <typename T, typename U>
|
|
void operator()(const T* a, const T* b, U* dst, int size) {
|
|
T scalar = *a;
|
|
constexpr int N = simd::max_size<T>;
|
|
while (size >= N) {
|
|
simd::store(dst, Op{}(simd::Simd<T, N>(scalar), simd::load<T, N>(b)));
|
|
dst += N;
|
|
b += N;
|
|
size -= N;
|
|
}
|
|
while (size-- > 0) {
|
|
*dst = Op{}(scalar, *b);
|
|
dst++;
|
|
b++;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename Op>
|
|
struct VectorVector {
|
|
template <typename T, typename U>
|
|
void operator()(const T* a, const T* b, U* dst, int size) {
|
|
constexpr int N = simd::max_size<T>;
|
|
while (size >= N) {
|
|
simd::store(dst, Op{}(simd::load<T, N>(a), simd::load<T, N>(b)));
|
|
dst += N;
|
|
a += N;
|
|
b += N;
|
|
size -= N;
|
|
}
|
|
while (size-- > 0) {
|
|
*dst = Op{}(*a, *b);
|
|
dst++;
|
|
a++;
|
|
b++;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename T, typename U, typename Op, int D, bool Strided>
|
|
void binary_op_dims(
|
|
const T* a,
|
|
const T* b,
|
|
U* out,
|
|
const Shape& shape,
|
|
const Strides& a_strides,
|
|
const Strides& b_strides,
|
|
const Strides& out_strides,
|
|
int axis) {
|
|
auto stride_a = a_strides[axis];
|
|
auto stride_b = b_strides[axis];
|
|
auto stride_out = out_strides[axis];
|
|
auto N = shape[axis];
|
|
|
|
for (int i = 0; i < N; i++) {
|
|
if constexpr (D > 1) {
|
|
binary_op_dims<T, U, Op, D - 1, Strided>(
|
|
a, b, out, shape, a_strides, b_strides, out_strides, axis + 1);
|
|
} else {
|
|
if constexpr (Strided) {
|
|
Op{}(a, b, out, stride_out);
|
|
} else {
|
|
*out = Op{}(*a, *b);
|
|
}
|
|
}
|
|
out += stride_out;
|
|
a += stride_a;
|
|
b += stride_b;
|
|
}
|
|
}
|
|
|
|
template <typename T, typename U, bool Strided, typename Op>
|
|
void binary_op_dispatch_dims(
|
|
const T* a,
|
|
const T* b,
|
|
U* out,
|
|
int dim,
|
|
int size,
|
|
const Shape& shape,
|
|
const Strides& a_strides,
|
|
const Strides& b_strides,
|
|
const Strides& out_strides) {
|
|
switch (dim) {
|
|
case 1:
|
|
binary_op_dims<T, U, Op, 1, Strided>(
|
|
a, b, out, shape, a_strides, b_strides, out_strides, 0);
|
|
return;
|
|
case 2:
|
|
binary_op_dims<T, U, Op, 2, Strided>(
|
|
a, b, out, shape, a_strides, b_strides, out_strides, 0);
|
|
return;
|
|
case 3:
|
|
binary_op_dims<T, U, Op, 3, Strided>(
|
|
a, b, out, shape, a_strides, b_strides, out_strides, 0);
|
|
return;
|
|
}
|
|
|
|
ContiguousIterator a_it(shape, a_strides, dim - 3);
|
|
ContiguousIterator b_it(shape, b_strides, dim - 3);
|
|
auto stride = out_strides[dim - 4];
|
|
for (int64_t elem = 0; elem < size; elem += stride) {
|
|
binary_op_dims<T, U, Op, 3, Strided>(
|
|
a + a_it.loc,
|
|
b + b_it.loc,
|
|
out + elem,
|
|
shape,
|
|
a_strides,
|
|
b_strides,
|
|
out_strides,
|
|
dim - 3);
|
|
a_it.step();
|
|
b_it.step();
|
|
}
|
|
}
|
|
|
|
template <typename T, typename U, typename Op>
|
|
void binary_op(const array& a, const array& b, array& out, BinaryOpType bopt) {
|
|
// The full computation is scalar scalar so call the base op once
|
|
auto a_ptr = a.data<T>();
|
|
auto b_ptr = b.data<T>();
|
|
|
|
auto out_ptr = out.data<U>();
|
|
if (bopt == BinaryOpType::ScalarScalar) {
|
|
*out_ptr = Op{}(*a_ptr, *b_ptr);
|
|
return;
|
|
}
|
|
|
|
// The full computation is scalar vector so delegate to the op
|
|
if (bopt == BinaryOpType::ScalarVector) {
|
|
ScalarVector<Op>{}(a_ptr, b_ptr, out_ptr, b.data_size());
|
|
return;
|
|
}
|
|
|
|
// The full computation is vector scalar so delegate to the op
|
|
if (bopt == BinaryOpType::VectorScalar) {
|
|
VectorScalar<Op>{}(a_ptr, b_ptr, out_ptr, a.data_size());
|
|
return;
|
|
}
|
|
|
|
// The full computation is vector vector so delegate to the op
|
|
if (bopt == BinaryOpType::VectorVector) {
|
|
VectorVector<Op>{}(a_ptr, b_ptr, out_ptr, a.size());
|
|
return;
|
|
}
|
|
|
|
// General computation so let's try to optimize
|
|
auto [new_shape, new_strides] = collapse_contiguous_dims(
|
|
a.shape(), {a.strides(), b.strides(), out.strides()});
|
|
auto& a_strides = new_strides[0];
|
|
auto& b_strides = new_strides[1];
|
|
auto& strides = new_strides[2];
|
|
|
|
// Get the left-most dim such that the array is row contiguous after
|
|
auto leftmost_rc_dim = [&strides](const auto& arr_strides) {
|
|
int d = arr_strides.size() - 1;
|
|
for (; d >= 0 && arr_strides[d] == strides[d]; d--) {
|
|
}
|
|
return d + 1;
|
|
};
|
|
auto a_rc_dim = leftmost_rc_dim(a_strides);
|
|
auto b_rc_dim = leftmost_rc_dim(b_strides);
|
|
|
|
// Get the left-most dim such that the array is a broadcasted "scalar" after
|
|
auto leftmost_s_dim = [](const auto& arr_strides) {
|
|
int d = arr_strides.size() - 1;
|
|
for (; d >= 0 && arr_strides[d] == 0; d--) {
|
|
}
|
|
return d + 1;
|
|
};
|
|
auto a_s_dim = leftmost_s_dim(a_strides);
|
|
auto b_s_dim = leftmost_s_dim(b_strides);
|
|
|
|
auto ndim = new_shape.size();
|
|
|
|
// Case 1: LxM and FxM where L and F are broadcastable and M is row
|
|
// contiguous
|
|
int dim = ndim;
|
|
if (int d = std::max(a_rc_dim, b_rc_dim); d < ndim) {
|
|
bopt = BinaryOpType::VectorVector;
|
|
dim = d;
|
|
// Case 2: LxM and Fx1 where L and F are broadcastable and M is row
|
|
// contiguous
|
|
} else if (int d = std::max(a_rc_dim, b_s_dim); d < ndim) {
|
|
bopt = BinaryOpType::VectorScalar;
|
|
dim = d;
|
|
// Case 3: Lx1 and FxM where L and F are broadcastable and M is row
|
|
// contiguous
|
|
} else if (int d = std::max(a_s_dim, b_rc_dim); d < ndim) {
|
|
bopt = BinaryOpType::ScalarVector;
|
|
dim = d;
|
|
}
|
|
|
|
// Can be sure dim > 0 since otherwise we would have used one of the fully
|
|
// contiguous methods above. Except for the case that the flags do not
|
|
// correspond to the underlying contiguity.
|
|
if (dim == 0 || strides[dim - 1] < 16) {
|
|
bopt = BinaryOpType::General;
|
|
dim = ndim;
|
|
}
|
|
|
|
switch (bopt) {
|
|
case BinaryOpType::VectorVector:
|
|
binary_op_dispatch_dims<T, U, true, VectorVector<Op>>(
|
|
a_ptr,
|
|
b_ptr,
|
|
out_ptr,
|
|
dim,
|
|
a.size(),
|
|
new_shape,
|
|
a_strides,
|
|
b_strides,
|
|
strides);
|
|
break;
|
|
case BinaryOpType::VectorScalar:
|
|
binary_op_dispatch_dims<T, U, true, VectorScalar<Op>>(
|
|
a_ptr,
|
|
b_ptr,
|
|
out_ptr,
|
|
dim,
|
|
a.size(),
|
|
new_shape,
|
|
a_strides,
|
|
b_strides,
|
|
strides);
|
|
break;
|
|
case BinaryOpType::ScalarVector:
|
|
binary_op_dispatch_dims<T, U, true, ScalarVector<Op>>(
|
|
a_ptr,
|
|
b_ptr,
|
|
out_ptr,
|
|
dim,
|
|
a.size(),
|
|
new_shape,
|
|
a_strides,
|
|
b_strides,
|
|
strides);
|
|
break;
|
|
default:
|
|
binary_op_dispatch_dims<T, U, false, Op>(
|
|
a_ptr,
|
|
b_ptr,
|
|
out_ptr,
|
|
dim,
|
|
a.size(),
|
|
new_shape,
|
|
a_strides,
|
|
b_strides,
|
|
strides);
|
|
break;
|
|
}
|
|
}
|
|
|
|
template <typename T, typename Op>
|
|
void binary_op(const array& a, const array& b, array& out, BinaryOpType bopt) {
|
|
binary_op<T, T, Op>(a, b, out, bopt);
|
|
}
|
|
|
|
} // namespace mlx::core
|