mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 17:31:16 +08:00

* remove hazard tracking * with fence map * no hazard tracking with fences * nits * fix fence retain * cleanup * fix quantized rebase
114 lines
3.6 KiB
C++
114 lines
3.6 KiB
C++
// Copyright © 2023 Apple Inc.
|
|
|
|
#include <cassert>
|
|
#include <sstream>
|
|
|
|
#include "mlx/backend/metal/copy.h"
|
|
#include "mlx/backend/metal/device.h"
|
|
#include "mlx/backend/metal/kernels.h"
|
|
#include "mlx/backend/metal/utils.h"
|
|
#include "mlx/primitives.h"
|
|
|
|
namespace mlx::core {
|
|
|
|
void Scan::eval_gpu(const std::vector<array>& inputs, array& out) {
|
|
assert(inputs.size() == 1);
|
|
|
|
out.set_data(allocator::malloc_or_wait(out.nbytes()));
|
|
|
|
auto& s = stream();
|
|
auto& d = metal::device(s.device);
|
|
|
|
// Ensure contiguity
|
|
std::vector<array> copies;
|
|
auto in = inputs[0];
|
|
if (!in.flags().row_contiguous) {
|
|
array arr_copy(in.shape(), in.dtype(), nullptr, {});
|
|
copy_gpu(in, arr_copy, CopyType::General, s);
|
|
copies.push_back(arr_copy);
|
|
in = arr_copy;
|
|
}
|
|
|
|
bool contiguous = in.strides()[axis_] == 1;
|
|
|
|
std::ostringstream kname;
|
|
kname << (contiguous ? "contig_" : "strided_");
|
|
kname << "scan_";
|
|
if (reverse_) {
|
|
kname << "reverse_";
|
|
}
|
|
kname << ((inclusive_) ? "inclusive_" : "exclusive_");
|
|
|
|
std::string reduce_type;
|
|
switch (reduce_type_) {
|
|
case Scan::Sum:
|
|
reduce_type = "sum";
|
|
break;
|
|
case Scan::Prod:
|
|
reduce_type = "prod";
|
|
break;
|
|
case Scan::Max:
|
|
reduce_type = "max";
|
|
break;
|
|
case Scan::Min:
|
|
reduce_type = "min";
|
|
break;
|
|
}
|
|
kname << reduce_type << "_" << type_to_name(in) << "_" << type_to_name(out);
|
|
auto kernel = get_scan_kernel(
|
|
d, kname.str(), reverse_, inclusive_, reduce_type, in, out);
|
|
|
|
if (contiguous) {
|
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
compute_encoder->setComputePipelineState(kernel);
|
|
compute_encoder.set_input_array(in, 0);
|
|
compute_encoder.set_output_array(out, 1);
|
|
size_t size = in.shape(axis_);
|
|
compute_encoder->setBytes(&size, sizeof(size_t), 2);
|
|
|
|
// Compute the thread grid
|
|
int n_reads = (in.itemsize() <= 4) ? 4 : 2;
|
|
constexpr int simd_size = 32;
|
|
int elements_per_simd = n_reads * simd_size;
|
|
int thread_groups = in.size() / size;
|
|
int thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
|
|
if (size <= n_reads * 1024) {
|
|
thread_group_size =
|
|
((size + elements_per_simd - 1) / elements_per_simd) * simd_size;
|
|
} else if (size <= n_reads * 2048) {
|
|
thread_group_size =
|
|
((size / 2 + elements_per_simd - 1) / elements_per_simd) * simd_size;
|
|
}
|
|
thread_group_size = std::min(
|
|
thread_group_size,
|
|
static_cast<int>(kernel->maxTotalThreadsPerThreadgroup()));
|
|
MTL::Size grid_dims = MTL::Size(thread_groups * thread_group_size, 1, 1);
|
|
MTL::Size group_dims = MTL::Size(thread_group_size, 1, 1);
|
|
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
|
} else {
|
|
auto& compute_encoder = d.get_command_encoder(s.index);
|
|
compute_encoder->setComputePipelineState(kernel);
|
|
compute_encoder.set_input_array(in, 0);
|
|
compute_encoder.set_output_array(out, 1);
|
|
size_t size = in.shape(axis_);
|
|
size_t stride = in.strides()[axis_];
|
|
compute_encoder->setBytes(&size, sizeof(size_t), 2);
|
|
compute_encoder->setBytes(&stride, sizeof(size_t), 3);
|
|
|
|
// Compute the thread grid
|
|
int n_reads = (in.itemsize() <= 4) ? 4 : 2;
|
|
int tile_x = 32;
|
|
int tile_y = 32;
|
|
int elements_per_tile_x = tile_x * n_reads;
|
|
int grid_y = in.size() / size / stride;
|
|
int grid_x = (stride + elements_per_tile_x - 1) / elements_per_tile_x;
|
|
MTL::Size grid_dims = MTL::Size(grid_x * tile_x, grid_y * tile_y, 1);
|
|
MTL::Size group_dims = MTL::Size(tile_x, tile_y, 1);
|
|
compute_encoder.dispatchThreads(grid_dims, group_dims);
|
|
}
|
|
|
|
d.add_temporaries(std::move(copies), s.index);
|
|
}
|
|
|
|
} // namespace mlx::core
|