mlx/python/tests/test_array.py
Awni Hannun c35f4d089a
start cuda circle config (#2256)
* rebase

* fix metal kernel linking issue on cuda

* start cuda circle config
2025-06-10 21:19:47 -07:00

2037 lines
66 KiB
Python

# Copyright © 2023-2024 Apple Inc.
import gc
import operator
import os
import pickle
import platform
import sys
import unittest
import weakref
from copy import copy, deepcopy
from itertools import permutations
if platform.system() == "Windows":
import psutil
else:
import resource
import mlx.core as mx
import mlx_tests
import numpy as np
try:
import tensorflow as tf
has_tf = True
except ImportError as e:
has_tf = False
class TestVersion(mlx_tests.MLXTestCase):
def test_version(self):
v = mx.__version__
vnums = v.split(".")
self.assertGreaterEqual(len(vnums), 3)
v = ".".join(str(int(vn)) for vn in vnums[:3])
self.assertEqual(v, mx.__version__[: len(v)])
class TestDtypes(mlx_tests.MLXTestCase):
def test_dtypes(self):
self.assertEqual(mx.bool_.size, 1)
self.assertEqual(mx.uint8.size, 1)
self.assertEqual(mx.uint16.size, 2)
self.assertEqual(mx.uint32.size, 4)
self.assertEqual(mx.uint64.size, 8)
self.assertEqual(mx.int8.size, 1)
self.assertEqual(mx.int16.size, 2)
self.assertEqual(mx.int32.size, 4)
self.assertEqual(mx.int64.size, 8)
self.assertEqual(mx.float16.size, 2)
self.assertEqual(mx.float32.size, 4)
self.assertEqual(mx.bfloat16.size, 2)
self.assertEqual(mx.complex64.size, 8)
self.assertEqual(str(mx.bool_), "mlx.core.bool")
self.assertEqual(str(mx.uint8), "mlx.core.uint8")
self.assertEqual(str(mx.uint16), "mlx.core.uint16")
self.assertEqual(str(mx.uint32), "mlx.core.uint32")
self.assertEqual(str(mx.uint64), "mlx.core.uint64")
self.assertEqual(str(mx.int8), "mlx.core.int8")
self.assertEqual(str(mx.int16), "mlx.core.int16")
self.assertEqual(str(mx.int32), "mlx.core.int32")
self.assertEqual(str(mx.int64), "mlx.core.int64")
self.assertEqual(str(mx.float16), "mlx.core.float16")
self.assertEqual(str(mx.float32), "mlx.core.float32")
self.assertEqual(str(mx.bfloat16), "mlx.core.bfloat16")
self.assertEqual(str(mx.complex64), "mlx.core.complex64")
def test_scalar_conversion(self):
dtypes = [
"uint8",
"uint16",
"uint32",
"uint64",
"int8",
"int16",
"int32",
"int64",
"float16",
"float32",
"complex64",
]
for dtype in dtypes:
with self.subTest(dtype=dtype):
x = np.array(2, dtype=getattr(np, dtype))
y = np.min(x)
self.assertEqual(x.dtype, y.dtype)
self.assertTupleEqual(x.shape, y.shape)
z = mx.array(y)
self.assertEqual(np.array(z), x)
self.assertEqual(np.array(z), y)
self.assertEqual(z.dtype, getattr(mx, dtype))
self.assertListEqual(list(z.shape), list(x.shape))
self.assertListEqual(list(z.shape), list(y.shape))
def test_finfo(self):
with self.assertRaises(ValueError):
mx.finfo(mx.int32)
self.assertEqual(mx.finfo(mx.float32).min, np.finfo(np.float32).min)
self.assertEqual(mx.finfo(mx.float32).max, np.finfo(np.float32).max)
self.assertEqual(mx.finfo(mx.float32).eps, np.finfo(np.float32).eps)
self.assertEqual(mx.finfo(mx.float32).dtype, mx.float32)
self.assertEqual(mx.finfo(mx.float16).min, np.finfo(np.float16).min)
self.assertEqual(mx.finfo(mx.float16).max, np.finfo(np.float16).max)
self.assertEqual(mx.finfo(mx.float16).eps, np.finfo(np.float16).eps)
self.assertEqual(mx.finfo(mx.float16).dtype, mx.float16)
def test_iinfo(self):
with self.assertRaises(ValueError):
mx.iinfo(mx.float32)
self.assertEqual(mx.iinfo(mx.int32).min, np.iinfo(np.int32).min)
self.assertEqual(mx.iinfo(mx.int32).max, np.iinfo(np.int32).max)
self.assertEqual(mx.iinfo(mx.int32).dtype, mx.int32)
self.assertEqual(mx.iinfo(mx.uint32).min, np.iinfo(np.uint32).min)
self.assertEqual(mx.iinfo(mx.uint32).max, np.iinfo(np.uint32).max)
self.assertEqual(mx.iinfo(mx.int8).dtype, mx.int8)
class TestEquality(mlx_tests.MLXTestCase):
def test_array_eq_array(self):
a = mx.array([1, 2, 3])
b = mx.array([1, 2, 3])
c = mx.array([1, 2, 4])
self.assertTrue(mx.all(a == b))
self.assertFalse(mx.all(a == c))
def test_array_eq_scalar(self):
a = mx.array([1, 2, 3])
b = 1
c = 4
d = 2.5
e = mx.array([1, 2.5, 3.25])
self.assertTrue(mx.any(a == b))
self.assertFalse(mx.all(a == c))
self.assertFalse(mx.all(a == d))
self.assertTrue(mx.any(a == e))
def test_list_equals_array(self):
a = mx.array([1, 2, 3])
b = [1, 2, 3]
c = [1, 2, 4]
# mlx array equality returns false if is compared with any kind of
# object which is not an mlx array
self.assertFalse(a == b)
self.assertFalse(a == c)
def test_tuple_equals_array(self):
a = mx.array([1, 2, 3])
b = (1, 2, 3)
c = (1, 2, 4)
# mlx array equality returns false if is compared with any kind of
# object which is not an mlx array
self.assertFalse(a == b)
self.assertFalse(a == c)
class TestInequality(mlx_tests.MLXTestCase):
def test_array_ne_array(self):
a = mx.array([1, 2, 3])
b = mx.array([1, 2, 3])
c = mx.array([1, 2, 4])
self.assertFalse(mx.any(a != b))
self.assertTrue(mx.any(a != c))
def test_array_ne_scalar(self):
a = mx.array([1, 2, 3])
b = 1
c = 4
d = 1.5
e = 2.5
f = mx.array([1, 2.5, 3.25])
self.assertFalse(mx.all(a != b))
self.assertTrue(mx.any(a != c))
self.assertTrue(mx.any(a != d))
self.assertTrue(mx.any(a != e))
self.assertFalse(mx.all(a != f))
def test_list_not_equals_array(self):
a = mx.array([1, 2, 3])
b = [1, 2, 3]
c = [1, 2, 4]
# mlx array inequality returns true if is compared with any kind of
# object which is not an mlx array
self.assertTrue(a != b)
self.assertTrue(a != c)
def test_dlx_device_type(self):
a = mx.array([1, 2, 3])
device_type, device_id = a.__dlpack_device__()
self.assertIn(device_type, [1, 8, 13])
self.assertEqual(device_id, 0)
if device_type == 8:
# Additional check if Metal is supposed to be available
self.assertTrue(mx.metal.is_available())
elif device_type == 1:
# Additional check if CPU is the fallback
self.assertFalse(mx.metal.is_available())
def test_tuple_not_equals_array(self):
a = mx.array([1, 2, 3])
b = (1, 2, 3)
c = (1, 2, 4)
# mlx array inequality returns true if is compared with any kind of
# object which is not an mlx array
self.assertTrue(a != b)
self.assertTrue(a != c)
def test_obj_inequality_array(self):
str_ = "hello"
a = mx.array([1, 2, 3])
lst_ = [1, 2, 3]
tpl_ = (1, 2, 3)
# check if object comparison(</>/<=/>=) with mlx array should throw an exception
# if not, the tests will fail
with self.assertRaises(ValueError):
a < str_
with self.assertRaises(ValueError):
a > str_
with self.assertRaises(ValueError):
a <= str_
with self.assertRaises(ValueError):
a >= str_
with self.assertRaises(ValueError):
a < lst_
with self.assertRaises(ValueError):
a > lst_
with self.assertRaises(ValueError):
a <= lst_
with self.assertRaises(ValueError):
a >= lst_
with self.assertRaises(ValueError):
a < tpl_
with self.assertRaises(ValueError):
a > tpl_
with self.assertRaises(ValueError):
a <= tpl_
with self.assertRaises(ValueError):
a >= tpl_
def test_invalid_op_on_array(self):
str_ = "hello"
a = mx.array([1, 2.5, 3.25])
lst_ = [1, 2.1, 3.25]
tpl_ = (1, 2.5, 3.25)
with self.assertRaises(ValueError):
a * str_
with self.assertRaises(ValueError):
a *= str_
with self.assertRaises(ValueError):
a /= lst_
with self.assertRaises(ValueError):
a // lst_
with self.assertRaises(ValueError):
a % lst_
with self.assertRaises(ValueError):
a**tpl_
with self.assertRaises(ValueError):
a & tpl_
with self.assertRaises(ValueError):
a | str_
class TestArray(mlx_tests.MLXTestCase):
def test_array_basics(self):
x = mx.array(1)
self.assertEqual(x.size, 1)
self.assertEqual(x.ndim, 0)
self.assertEqual(x.itemsize, 4)
self.assertEqual(x.nbytes, 4)
self.assertEqual(x.shape, ())
self.assertEqual(x.dtype, mx.int32)
self.assertEqual(x.item(), 1)
self.assertTrue(isinstance(x.item(), int))
with self.assertRaises(TypeError):
len(x)
x = mx.array(1, mx.uint32)
self.assertEqual(x.item(), 1)
self.assertTrue(isinstance(x.item(), int))
x = mx.array(1, mx.int64)
self.assertEqual(x.item(), 1)
self.assertTrue(isinstance(x.item(), int))
x = mx.array(1, mx.bfloat16)
self.assertEqual(x.item(), 1.0)
x = mx.array(1.0)
self.assertEqual(x.size, 1)
self.assertEqual(x.ndim, 0)
self.assertEqual(x.shape, ())
self.assertEqual(x.dtype, mx.float32)
self.assertEqual(x.item(), 1.0)
self.assertTrue(isinstance(x.item(), float))
x = mx.array(False)
self.assertEqual(x.size, 1)
self.assertEqual(x.ndim, 0)
self.assertEqual(x.shape, ())
self.assertEqual(x.dtype, mx.bool_)
self.assertEqual(x.item(), False)
self.assertTrue(isinstance(x.item(), bool))
x = mx.array(complex(1, 1))
self.assertEqual(x.ndim, 0)
self.assertEqual(x.shape, ())
self.assertEqual(x.dtype, mx.complex64)
self.assertEqual(x.item(), complex(1, 1))
self.assertTrue(isinstance(x.item(), complex))
x = mx.array([True, False, True])
self.assertEqual(x.dtype, mx.bool_)
self.assertEqual(x.ndim, 1)
self.assertEqual(x.shape, (3,))
self.assertEqual(len(x), 3)
x = mx.array([True, False, True], mx.float32)
self.assertEqual(x.dtype, mx.float32)
x = mx.array([0, 1, 2])
self.assertEqual(x.dtype, mx.int32)
self.assertEqual(x.ndim, 1)
self.assertEqual(x.shape, (3,))
x = mx.array([0, 1, 2], mx.float32)
self.assertEqual(x.dtype, mx.float32)
x = mx.array([0.0, 1.0, 2.0])
self.assertEqual(x.dtype, mx.float32)
self.assertEqual(x.ndim, 1)
self.assertEqual(x.shape, (3,))
x = mx.array([1j, 1 + 0j])
self.assertEqual(x.dtype, mx.complex64)
self.assertEqual(x.ndim, 1)
self.assertEqual(x.shape, (2,))
# From tuple
x = mx.array((1, 2, 3), mx.int32)
self.assertEqual(x.dtype, mx.int32)
self.assertEqual(x.tolist(), [1, 2, 3])
def test_bool_conversion(self):
x = mx.array(True)
self.assertTrue(x)
x = mx.array(False)
self.assertFalse(x)
x = mx.array(1.0)
self.assertTrue(x)
x = mx.array(0.0)
self.assertFalse(x)
def test_int_type(self):
x = mx.array(1)
self.assertTrue(x.dtype == mx.int32)
x = mx.array(2**32 - 1)
self.assertTrue(x.dtype == mx.int64)
x = mx.array(2**40)
self.assertTrue(x.dtype == mx.int64)
x = mx.array(2**32 - 1, dtype=mx.uint32)
self.assertTrue(x.dtype == mx.uint32)
x = mx.array([1, 2], dtype=mx.int64) + 0x80000000
self.assertTrue(x.dtype == mx.int64)
def test_construction_from_lists(self):
x = mx.array([])
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, (0,))
self.assertEqual(x.dtype, mx.float32)
x = mx.array([[], [], []])
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, (3, 0))
self.assertEqual(x.dtype, mx.float32)
x = mx.array([[[], []], [[], []], [[], []]])
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, (3, 2, 0))
self.assertEqual(x.dtype, mx.float32)
# Check failure cases
with self.assertRaises(ValueError):
x = mx.array([[[], []], [[]], [[], []]])
with self.assertRaises(ValueError):
x = mx.array([[[], []], [[1.0, 2.0], []], [[], []]])
with self.assertRaises(ValueError):
x = mx.array([[0, 1], [[0, 1], 1]])
with self.assertRaises(ValueError):
x = mx.array([[0, 1], ["hello", 1]])
x = mx.array([True, False, 3])
self.assertEqual(x.dtype, mx.int32)
x = mx.array([True, False, 3, 4.0])
self.assertEqual(x.dtype, mx.float32)
x = mx.array([[True, False], [1, 3], [2, 4.0]])
self.assertEqual(x.dtype, mx.float32)
x = mx.array([[1.0, 2.0], [0.0, 3.9]], mx.bool_)
self.assertEqual(x.dtype, mx.bool_)
self.assertTrue(mx.array_equal(x, mx.array([[True, True], [False, True]])))
x = mx.array([[1.0, 2.0], [0.0, 3.9]], mx.int32)
self.assertTrue(mx.array_equal(x, mx.array([[1, 2], [0, 3]])))
x = mx.array([1 + 0j, 2j, True, 0], mx.complex64)
self.assertEqual(x.tolist(), [1 + 0j, 2j, 1 + 0j, 0j])
xnp = np.array([0, 4294967295], dtype=np.uint32)
x = mx.array([0, 4294967295], dtype=mx.uint32)
self.assertTrue(np.array_equal(x, xnp))
xnp = np.array([0, 4294967295], dtype=np.float32)
x = mx.array([0, 4294967295], dtype=mx.float32)
self.assertTrue(np.array_equal(x, xnp))
def test_construction_from_lists_of_mlx_arrays(self):
dtypes = [
mx.bool_,
mx.uint8,
mx.uint16,
mx.uint32,
mx.uint64,
mx.int8,
mx.int16,
mx.int32,
mx.int64,
mx.float16,
mx.float32,
mx.bfloat16,
mx.complex64,
]
for x_t, y_t in permutations(dtypes, 2):
# check type promotion and numeric correctness
x, y = mx.array([1.0], x_t), mx.array([2.0], y_t)
z = mx.array([x, y])
expected = mx.stack([x, y], axis=0)
self.assertEqualArray(z, expected)
# check heterogeneous construction with mlx arrays and python primitive types
x, y = mx.array([True], x_t), mx.array([False], y_t)
z = mx.array([[x, [2.0]], [[3.0], y]])
expected = mx.array([[[x.item()], [2.0]], [[3.0], [y.item()]]], z.dtype)
self.assertEqualArray(z, expected)
# check when create from an array which does not contain memory to the raw data
x = mx.array([1.0]).astype(mx.bfloat16) # x does not hold raw data
for y_t in dtypes:
y = mx.array([2.0], y_t)
z = mx.array([x, y])
expected = mx.stack([x, y], axis=0)
self.assertEqualArray(z, expected)
# shape check from `stack()`
with self.assertRaises(ValueError) as e:
mx.array([x, 1.0])
self.assertEqual(
str(e.exception), "Initialization encountered non-uniform length."
)
# shape check from `validate_shape`
with self.assertRaises(ValueError) as e:
mx.array([1.0, x])
self.assertEqual(
str(e.exception), "Initialization encountered non-uniform length."
)
# check that `[mx.array, ...]` retains the `mx.array` in the graph
def f(x):
y = mx.array([x, mx.array([2.0])])
return (2 * y).sum()
x = mx.array([1.0])
dfdx = mx.grad(f)
self.assertEqual(dfdx(x).item(), 2.0)
def test_init_from_array(self):
x = mx.array(3.0)
y = mx.array(x)
self.assertTrue(mx.array_equal(x, y))
y = mx.array(x, mx.int32)
self.assertEqual(y.dtype, mx.int32)
self.assertEqual(y.item(), 3)
y = mx.array(x, mx.bool_)
self.assertEqual(y.dtype, mx.bool_)
self.assertEqual(y.item(), True)
y = mx.array(x, mx.complex64)
self.assertEqual(y.dtype, mx.complex64)
self.assertEqual(y.item(), 3.0 + 0j)
def test_array_repr(self):
x = mx.array(True)
self.assertEqual(str(x), "array(True, dtype=bool)")
x = mx.array(1)
self.assertEqual(str(x), "array(1, dtype=int32)")
x = mx.array(1.0)
self.assertEqual(str(x), "array(1, dtype=float32)")
x = mx.array([1, 0, 1])
self.assertEqual(str(x), "array([1, 0, 1], dtype=int32)")
x = mx.array([1] * 6)
expected = "array([1, 1, 1, 1, 1, 1], dtype=int32)"
self.assertEqual(str(x), expected)
x = mx.array([1] * 7)
expected = "array([1, 1, 1, ..., 1, 1, 1], dtype=int32)"
self.assertEqual(str(x), expected)
x = mx.array([[1, 2], [1, 2], [1, 2]])
expected = "array([[1, 2],\n" " [1, 2],\n" " [1, 2]], dtype=int32)"
self.assertEqual(str(x), expected)
x = mx.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]])
expected = (
"array([[[1, 2],\n"
" [1, 2]],\n"
" [[1, 2],\n"
" [1, 2]]], dtype=int32)"
)
self.assertEqual(str(x), expected)
x = mx.array([[1, 2]] * 6)
expected = (
"array([[1, 2],\n"
" [1, 2],\n"
" [1, 2],\n"
" [1, 2],\n"
" [1, 2],\n"
" [1, 2]], dtype=int32)"
)
self.assertEqual(str(x), expected)
x = mx.array([[1, 2]] * 7)
expected = (
"array([[1, 2],\n"
" [1, 2],\n"
" [1, 2],\n"
" ...,\n"
" [1, 2],\n"
" [1, 2],\n"
" [1, 2]], dtype=int32)"
)
self.assertEqual(str(x), expected)
x = mx.array([1], dtype=mx.int8)
expected = "array([1], dtype=int8)"
self.assertEqual(str(x), expected)
x = mx.array([1], dtype=mx.int16)
expected = "array([1], dtype=int16)"
self.assertEqual(str(x), expected)
x = mx.array([1], dtype=mx.uint8)
expected = "array([1], dtype=uint8)"
self.assertEqual(str(x), expected)
# Fp16 is not supported in all platforms
x = mx.array([1.2], dtype=mx.float16)
expected = "array([1.2002], dtype=float16)"
self.assertEqual(str(x), expected)
x = mx.array([1 + 1j], dtype=mx.complex64)
expected = "array([1+1j], dtype=complex64)"
self.assertEqual(str(x), expected)
x = mx.array([1 - 1j], dtype=mx.complex64)
expected = "array([1-1j], dtype=complex64)"
x = mx.array([1 + 1j], dtype=mx.complex64)
expected = "array([1+1j], dtype=complex64)"
self.assertEqual(str(x), expected)
x = mx.array([1 - 1j], dtype=mx.complex64)
expected = "array([1-1j], dtype=complex64)"
def test_array_to_list(self):
types = [mx.bool_, mx.uint32, mx.int32, mx.int64, mx.float32]
for t in types:
x = mx.array(1, t)
self.assertEqual(x.tolist(), 1)
vals = [1, 2, 3, 4]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
vals = [[1, 2], [3, 4]]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
vals = [[1, 0], [0, 1]]
x = mx.array(vals, mx.bool_)
self.assertEqual(x.tolist(), vals)
vals = [[1.5, 2.5], [3.5, 4.5]]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
vals = [[[0.5, 1.5], [2.5, 3.5]], [[4.5, 5.5], [6.5, 7.5]]]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
# Empty arrays
vals = []
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
vals = [[], []]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
# Complex arrays
vals = [0.5 + 0j, 1.5 + 1j, 2.5 + 0j, 3.5 + 1j]
x = mx.array(vals)
self.assertEqual(x.tolist(), vals)
# Half types
vals = [1.0, 2.0, 3.0, 4.0, 5.0]
x = mx.array(vals, dtype=mx.float16)
self.assertEqual(x.tolist(), vals)
x = mx.array(vals, dtype=mx.bfloat16)
self.assertEqual(x.tolist(), vals)
def test_array_np_conversion(self):
# Shape test
a = np.array([])
x = mx.array(a)
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, (0,))
self.assertEqual(x.dtype, mx.float32)
a = np.array([[], [], []])
x = mx.array(a)
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, (3, 0))
self.assertEqual(x.dtype, mx.float32)
a = np.array([[[], []], [[], []], [[], []]])
x = mx.array(a)
self.assertEqual(x.size, 0)
self.assertEqual(x.shape, (3, 2, 0))
self.assertEqual(x.dtype, mx.float32)
# Content test
a = 2.0 * np.ones((3, 5, 4))
x = mx.array(a)
self.assertEqual(x.dtype, mx.float32)
self.assertEqual(x.ndim, 3)
self.assertEqual(x.shape, (3, 5, 4))
y = np.asarray(x)
self.assertTrue(np.allclose(a, y))
a = np.array(3, dtype=np.int32)
x = mx.array(a)
self.assertEqual(x.dtype, mx.int32)
self.assertEqual(x.ndim, 0)
self.assertEqual(x.shape, ())
self.assertEqual(x.item(), 3)
# mlx to numpy test
x = mx.array([True, False, True])
y = np.asarray(x)
self.assertEqual(y.dtype, np.bool_)
self.assertEqual(y.ndim, 1)
self.assertEqual(y.shape, (3,))
self.assertEqual(y[0], True)
self.assertEqual(y[1], False)
self.assertEqual(y[2], True)
# complex64 mx <-> np
cvals = [0j, 1, 1 + 1j]
x = np.array(cvals)
y = mx.array(x)
self.assertEqual(y.dtype, mx.complex64)
self.assertEqual(y.shape, (3,))
self.assertEqual(y.tolist(), cvals)
y = mx.array([0j, 1, 1 + 1j])
x = np.asarray(y)
self.assertEqual(x.dtype, np.complex64)
self.assertEqual(x.shape, (3,))
self.assertEqual(x.tolist(), cvals)
def test_array_np_dtype_conversion(self):
dtypes_list = [
(mx.bool_, np.bool_),
(mx.uint8, np.uint8),
(mx.uint16, np.uint16),
(mx.uint32, np.uint32),
(mx.uint64, np.uint64),
(mx.int8, np.int8),
(mx.int16, np.int16),
(mx.int32, np.int32),
(mx.int64, np.int64),
(mx.float16, np.float16),
(mx.float32, np.float32),
(mx.complex64, np.complex64),
]
for mlx_dtype, np_dtype in dtypes_list:
a_npy = np.random.uniform(low=0, high=100, size=(32,)).astype(np_dtype)
a_mlx = mx.array(a_npy)
self.assertEqual(a_mlx.dtype, mlx_dtype)
self.assertTrue(np.allclose(a_mlx, a_npy))
b_mlx = mx.random.uniform(
low=0,
high=10,
shape=(32,),
).astype(mlx_dtype)
b_npy = np.array(b_mlx)
self.assertEqual(b_npy.dtype, np_dtype)
def test_array_from_noncontiguous_np(self):
for t in [np.int8, np.int32, np.float16, np.float32, np.complex64]:
np_arr = np.random.uniform(size=(10, 10)).astype(np.complex64)
np_arr = np_arr.T
mx_arr = mx.array(np_arr)
self.assertTrue(mx.array_equal(np_arr, mx_arr))
def test_array_np_shape_dim_check(self):
a_npy = np.empty(2**31, dtype=np.bool_)
with self.assertRaises(ValueError) as e:
mx.array(a_npy)
self.assertEqual(
str(e.exception), "Shape dimension falls outside supported `int` range."
)
def test_dtype_promotion(self):
dtypes_list = [
(mx.bool_, np.bool_),
(mx.uint8, np.uint8),
(mx.uint16, np.uint16),
(mx.uint32, np.uint32),
(mx.uint64, np.uint64),
(mx.int8, np.int8),
(mx.int16, np.int16),
(mx.int32, np.int32),
(mx.int64, np.int64),
(mx.float32, np.float32),
]
promotion_pairs = permutations(dtypes_list, 2)
for (mlx_dt_1, np_dt_1), (mlx_dt_2, np_dt_2) in promotion_pairs:
with self.subTest(dtype1=np_dt_1, dtype2=np_dt_2):
a_npy = np.ones((3,), dtype=np_dt_1)
b_npy = np.ones((3,), dtype=np_dt_2)
c_npy = a_npy + b_npy
a_mlx = mx.ones((3,), dtype=mlx_dt_1)
b_mlx = mx.ones((3,), dtype=mlx_dt_2)
c_mlx = a_mlx + b_mlx
self.assertEqual(c_mlx.dtype, mx.array(c_npy).dtype)
a_mlx = mx.ones((3,), dtype=mx.float16)
b_mlx = mx.ones((3,), dtype=mx.float32)
c_mlx = a_mlx + b_mlx
self.assertEqual(c_mlx.dtype, mx.float32)
b_mlx = mx.ones((3,), dtype=mx.int32)
c_mlx = a_mlx + b_mlx
self.assertEqual(c_mlx.dtype, mx.float16)
def test_dtype_python_scalar_promotion(self):
tests = [
(mx.bool_, operator.mul, False, mx.bool_),
(mx.bool_, operator.mul, 0, mx.int32),
(mx.bool_, operator.mul, 1.0, mx.float32),
(mx.int8, operator.mul, False, mx.int8),
(mx.int8, operator.mul, 0, mx.int8),
(mx.int8, operator.mul, 1.0, mx.float32),
(mx.int16, operator.mul, False, mx.int16),
(mx.int16, operator.mul, 0, mx.int16),
(mx.int16, operator.mul, 1.0, mx.float32),
(mx.int32, operator.mul, False, mx.int32),
(mx.int32, operator.mul, 0, mx.int32),
(mx.int32, operator.mul, 1.0, mx.float32),
(mx.int64, operator.mul, False, mx.int64),
(mx.int64, operator.mul, 0, mx.int64),
(mx.int64, operator.mul, 1.0, mx.float32),
(mx.uint8, operator.mul, False, mx.uint8),
(mx.uint8, operator.mul, 0, mx.uint8),
(mx.uint8, operator.mul, 1.0, mx.float32),
(mx.uint16, operator.mul, False, mx.uint16),
(mx.uint16, operator.mul, 0, mx.uint16),
(mx.uint16, operator.mul, 1.0, mx.float32),
(mx.uint32, operator.mul, False, mx.uint32),
(mx.uint32, operator.mul, 0, mx.uint32),
(mx.uint32, operator.mul, 1.0, mx.float32),
(mx.uint64, operator.mul, False, mx.uint64),
(mx.uint64, operator.mul, 0, mx.uint64),
(mx.uint64, operator.mul, 1.0, mx.float32),
(mx.float32, operator.mul, False, mx.float32),
(mx.float32, operator.mul, 0, mx.float32),
(mx.float32, operator.mul, 1.0, mx.float32),
(mx.float16, operator.mul, False, mx.float16),
(mx.float16, operator.mul, 0, mx.float16),
(mx.float16, operator.mul, 1.0, mx.float16),
]
for dtype_in, f, v, dtype_out in tests:
x = mx.array(0, dtype_in)
y = f(x, v)
self.assertEqual(y.dtype, dtype_out)
def test_array_comparison(self):
a = mx.array([0.0, 1.0, 5.0])
b = mx.array([-1.0, 2.0, 5.0])
self.assertEqual((a < b).tolist(), [False, True, False])
self.assertEqual((a <= b).tolist(), [False, True, True])
self.assertEqual((a > b).tolist(), [True, False, False])
self.assertEqual((a >= b).tolist(), [True, False, True])
self.assertEqual((a < 5).tolist(), [True, True, False])
self.assertEqual((5 < a).tolist(), [False, False, False])
self.assertEqual((5 <= a).tolist(), [False, False, True])
self.assertEqual((a > 1).tolist(), [False, False, True])
self.assertEqual((a >= 1).tolist(), [False, True, True])
def test_array_neg(self):
a = mx.array([-1.0, 4.0, 0.0])
self.assertEqual((-a).tolist(), [1.0, -4.0, 0.0])
def test_array_type_cast(self):
a = mx.array([0.1, 2.3, -1.3])
b = [0, 2, -1]
self.assertEqual(a.astype(mx.int32).tolist(), b)
self.assertEqual(a.astype(mx.int32).dtype, mx.int32)
b = mx.array(b).astype(mx.float32)
self.assertEqual(b.dtype, mx.float32)
def test_array_iteration(self):
a = mx.array([0, 1, 2])
for i, x in enumerate(a):
self.assertEqual(x.item(), i)
a = mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
x, y, z = a
self.assertEqual(x.tolist(), [1.0, 2.0])
self.assertEqual(y.tolist(), [3.0, 4.0])
self.assertEqual(z.tolist(), [5.0, 6.0])
def test_array_pickle(self):
dtypes = [
mx.int8,
mx.int16,
mx.int32,
mx.int64,
mx.uint8,
mx.uint16,
mx.uint32,
mx.uint64,
mx.float16,
mx.float32,
mx.complex64,
]
for dtype in dtypes:
x = mx.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=dtype)
state = pickle.dumps(x)
y = pickle.loads(state)
self.assertEqualArray(y, x)
# check if it throws an error when dtype is not supported (bfloat16)
x = mx.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=mx.bfloat16)
with self.assertRaises(TypeError):
pickle.dumps(x)
def test_array_copy(self):
dtypes = [
mx.int8,
mx.int16,
mx.int32,
mx.int64,
mx.uint8,
mx.uint16,
mx.uint32,
mx.uint64,
mx.float16,
mx.float32,
mx.bfloat16,
mx.complex64,
]
for copy_function in [copy, deepcopy]:
for dtype in dtypes:
x = mx.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], dtype=dtype)
y = copy_function(x)
self.assertEqualArray(y, x)
y -= 1
self.assertEqualArray(y, x - 1)
def test_indexing(self):
# Only ellipsis is a no-op
a_mlx = mx.array([1])[...]
self.assertEqual(a_mlx.shape, (1,))
self.assertEqual(a_mlx.item(), 1)
# Basic content check, slice indexing
a_npy = np.arange(64, dtype=np.float32)
a_mlx = mx.array(a_npy)
a_sliced_mlx = a_mlx[2:50:4]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[2:50:4]))
# Basic content check, mlx array indexing
a_npy = np.arange(64, dtype=np.int32)
a_npy = a_npy.reshape((8, 8))
a_mlx = mx.array(a_npy)
idx_npy = np.array([0, 1, 2, 7, 5], dtype=np.uint32)
idx_mlx = mx.array(idx_npy)
a_sliced_mlx = a_mlx[idx_mlx]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy]))
# Basic content check, int indexing
a_sliced_mlx = a_mlx[5]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[5]))
self.assertEqual(len(a_sliced_npy.shape), len(a_npy[5].shape))
self.assertEqual(len(a_sliced_npy.shape), 1)
self.assertEqual(a_sliced_npy.shape[0], a_npy[5].shape[0])
# Basic content check, negative indexing
a_sliced_mlx = a_mlx[-1]
self.assertTrue(np.array_equal(a_sliced_mlx, a_npy[-1]))
# Basic content check, empty index
a_sliced_mlx = a_mlx[()]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[()]))
# Basic content check, new axis
a_sliced_mlx = a_mlx[None]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[None]))
a_sliced_mlx = a_mlx[:, None]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, None]))
# Multi dim indexing, all ints
self.assertEqual(a_mlx[0, 0].item(), 0)
self.assertEqual(a_mlx[0, 0].ndim, 0)
# Multi dim indexing, all slices
a_sliced_mlx = a_mlx[2:4, 5:]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[2:4, 5:]))
a_sliced_mlx = a_mlx[:, 0:5]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, 0:5]))
# Slicing, strides
a_sliced_mlx = a_mlx[:, ::2]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, ::2]))
# Slicing, -ve index
a_sliced_mlx = a_mlx[-2:, :-1]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[-2:, :-1]))
# Slicing, start > end
a_sliced_mlx = a_mlx[8:3]
self.assertEqual(a_sliced_mlx.size, 0)
# Slicing, Clipping past the end
a_sliced_mlx = a_mlx[7:10]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[7:10]))
# Multi dim indexing, int and slices
a_sliced_mlx = a_mlx[0, :5]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[0, :5]))
a_sliced_mlx = a_mlx[:, -1]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, -1]))
# Multi dim indexing, int and array
a_sliced_mlx = a_mlx[idx_mlx, 0]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy, 0]))
# Multi dim indexing, array and slices
a_sliced_mlx = a_mlx[idx_mlx, :5]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[idx_npy, :5]))
a_sliced_mlx = a_mlx[:, idx_mlx]
a_sliced_npy = np.asarray(a_sliced_mlx)
self.assertTrue(np.array_equal(a_sliced_npy, a_npy[:, idx_npy]))
# Multi dim indexing with multiple arrays
def check_slices(arr_np, *idx_np):
arr_mlx = mx.array(arr_np)
idx_mlx = [
mx.array(idx) if isinstance(idx, np.ndarray) else idx for idx in idx_np
]
slice_mlx = arr_mlx[tuple(idx_mlx)]
self.assertTrue(
np.array_equal(arr_np[tuple(idx_np)], arr_mlx[tuple(idx_mlx)])
)
a_np = np.arange(16).reshape(4, 4)
check_slices(a_np, np.array([0, 1, 2, 3]), np.array([0, 1, 2, 3]))
check_slices(a_np, np.array([0, 1, 2, 3]), np.array([1, 0, 3, 3]))
check_slices(a_np, np.array([[0, 1]]), np.array([[0], [1], [3]]))
a_np = np.arange(64).reshape(2, 4, 2, 4)
check_slices(a_np, 0, np.array([0, 1, 2]))
check_slices(a_np, slice(0, 1), np.array([0, 1, 2]))
check_slices(
a_np, slice(0, 1), np.array([0, 1, 2]), slice(None), slice(0, 4, 2)
)
check_slices(
a_np, slice(0, 1), np.array([0, 1, 2]), slice(None), np.array([1, 2, 0])
)
check_slices(a_np, slice(0, 1), np.array([0, 1, 2]), 1, np.array([1, 2, 0]))
check_slices(
a_np, slice(0, 1), np.array([0, 1, 2]), np.array([1, 0, 0]), slice(0, 1)
)
check_slices(
a_np,
slice(0, 1),
np.array([[0], [1], [2]]),
np.array([[1, 0, 0]]),
slice(0, 1),
)
check_slices(
a_np,
slice(0, 2),
np.array([[0], [1], [2]]),
slice(0, 2),
np.array([[1, 0, 0]]),
)
for p in permutations([slice(None), slice(None), 0, np.array([1, 0])]):
check_slices(a_np, *p)
for p in permutations(
[slice(None), slice(None), 0, np.array([1, 0]), None, None]
):
check_slices(a_np, *p)
for p in permutations([0, np.array([1, 0]), None, Ellipsis, slice(None)]):
check_slices(a_np, *p)
# Non-contiguous arrays in slicing
a_mlx = mx.reshape(mx.arange(128), (16, 8))
a_mlx = a_mlx[::2, :]
a_np = np.array(a_mlx)
idx_np = np.arange(8)[::2]
idx_mlx = mx.arange(8)[::2]
self.assertTrue(
np.array_equal(a_np[idx_np, idx_np], np.array(a_mlx[idx_mlx, idx_mlx]))
)
# Slicing with negative indices and integer
a_np = np.arange(10).reshape(5, 2)
a_mlx = mx.array(a_np)
self.assertTrue(np.array_equal(a_np[2:-1, 0], np.array(a_mlx[2:-1, 0])))
def test_indexing_grad(self):
x = mx.array([[1, 2], [3, 4]]).astype(mx.float32)
ind = mx.array([0, 1, 0]).astype(mx.float32)
def index_fn(x, ind):
return x[ind.astype(mx.int32)].sum()
grad_x, grad_ind = mx.grad(index_fn, argnums=(0, 1))(x, ind)
expected = mx.array([[2, 2], [1, 1]])
self.assertTrue(mx.array_equal(grad_x, expected))
self.assertTrue(mx.array_equal(grad_ind, mx.zeros(ind.shape)))
def test_setitem(self):
a = mx.array(0)
a[None] = 1
self.assertEqual(a.item(), 1)
a = mx.array([1, 2, 3])
a[0] = 2
self.assertEqual(a.tolist(), [2, 2, 3])
a[-1] = 2
self.assertEqual(a.tolist(), [2, 2, 2])
a[0] = mx.array([[[1]]])
self.assertEqual(a.tolist(), [1, 2, 2])
a[:] = 0
self.assertEqual(a.tolist(), [0, 0, 0])
a[None] = 1
self.assertEqual(a.tolist(), [1, 1, 1])
a[0:1] = 2
self.assertEqual(a.tolist(), [2, 1, 1])
a[0:2] = 3
self.assertEqual(a.tolist(), [3, 3, 1])
a[0:3] = 4
self.assertEqual(a.tolist(), [4, 4, 4])
a[0:1] = mx.array(0)
self.assertEqual(a.tolist(), [0, 4, 4])
a[0:1] = mx.array([1])
self.assertEqual(a.tolist(), [1, 4, 4])
with self.assertRaises(ValueError):
a[0:1] = mx.array([2, 3])
a[0:2] = mx.array([2, 2])
self.assertEqual(a.tolist(), [2, 2, 4])
a[:] = mx.array([[[[1, 1, 1]]]])
self.assertEqual(a.tolist(), [1, 1, 1])
# Array slices
def check_slices(arr_np, update_np, *idx_np):
arr_mlx = mx.array(arr_np)
update_mlx = mx.array(update_np)
idx_mlx = [
mx.array(idx) if isinstance(idx, np.ndarray) else idx for idx in idx_np
]
if len(idx_np) > 1:
idx_np = tuple(idx_np)
idx_mlx = tuple(idx_mlx)
else:
idx_np = idx_np[0]
idx_mlx = idx_mlx[0]
arr_np[idx_np] = update_np
arr_mlx[idx_mlx] = update_mlx
self.assertTrue(np.array_equal(arr_np, arr_mlx))
check_slices(np.zeros((3, 3)), 1, 0)
check_slices(np.zeros((3, 3)), 1, -1)
check_slices(np.zeros((3, 3)), 1, slice(0, 2))
check_slices(np.zeros((3, 3)), np.array([[0, 1, 2], [3, 4, 5]]), slice(0, 2))
with self.assertRaises(ValueError):
a = mx.array(0)
a[0] = mx.array(1)
check_slices(np.zeros((3, 3)), 1, np.array([0, 1, 2]))
check_slices(np.zeros((3, 3)), np.array(3), np.array([0, 1, 2]))
check_slices(np.zeros((3, 3)), np.array([3]), np.array([0, 1, 2]))
check_slices(np.zeros((3, 3)), np.array([3]), np.array([0, 1]))
check_slices(np.zeros((3, 2)), np.array([[3, 3], [4, 4]]), np.array([0, 1]))
check_slices(np.zeros((3, 2)), np.array([[3, 3], [4, 4]]), np.array([0, 1]))
check_slices(
np.zeros((3, 2)), np.array([[3, 3], [4, 4], [5, 5]]), np.array([0, 0, 1])
)
# Multiple slices
a = mx.array(0)
a[None, None] = 1
self.assertEqual(a.item(), 1)
a[None, None] = mx.array(2)
self.assertEqual(a.item(), 2)
a[None, None] = mx.array([[[3]]])
self.assertEqual(a.item(), 3)
a[()] = 4
self.assertEqual(a.item(), 4)
a_np = np.zeros((2, 3, 4, 5))
check_slices(a_np, 1, np.array([0, 0]), slice(0, 2), slice(0, 3), 4)
check_slices(
a_np,
np.arange(10).reshape(2, 5),
np.array([0, 0]),
np.array([0, 1]),
np.array([2, 3]),
)
check_slices(
a_np,
np.array([[3], [4]]),
np.array([0, 0]),
np.array([0, 1]),
np.array([2, 3]),
)
check_slices(
a_np, np.arange(5), np.array([0, 0]), np.array([0, 1]), np.array([2, 3])
)
check_slices(np.zeros(5), np.arange(2), None, None, np.array([2, 3]))
check_slices(
np.zeros((4, 3, 4)),
np.arange(3),
np.array([2, 3]),
slice(0, 3),
np.array([2, 3]),
)
with self.assertRaises(ValueError):
a = mx.zeros((4, 3, 4))
a[mx.array([2, 3]), None, mx.array([2, 3])] = mx.arange(2)
with self.assertRaises(ValueError):
a = mx.zeros((4, 3, 4))
a[mx.array([2, 3]), None, mx.array([2, 3])] = mx.arange(3)
check_slices(np.zeros((4, 3, 4)), 1, np.array([2, 3]), None, np.array([2, 1]))
check_slices(
np.zeros((4, 3, 4)), np.arange(4), np.array([2, 3]), None, np.array([2, 1])
)
check_slices(
np.zeros((4, 3, 4)),
np.arange(2 * 4).reshape(2, 1, 4),
np.array([2, 3]),
None,
np.array([2, 1]),
)
check_slices(np.zeros((4, 4)), 1, slice(0, 2), slice(0, 2))
check_slices(np.zeros((4, 4)), np.arange(2), slice(0, 2), slice(0, 2))
check_slices(
np.zeros((4, 4)), np.arange(2).reshape(2, 1), slice(0, 2), slice(0, 2)
)
check_slices(
np.zeros((4, 4)), np.arange(4).reshape(2, 2), slice(0, 2), slice(0, 2)
)
with self.assertRaises(ValueError):
a = mx.zeros((2, 2, 2))
a[..., ...] = 1
with self.assertRaises(ValueError):
a = mx.zeros((2, 2, 2, 2, 2))
a[0, ..., 0, ..., 0] = 1
with self.assertRaises(ValueError):
a = mx.zeros((2, 2))
a[0, 0, 0] = 1
with self.assertRaises(ValueError):
a = mx.zeros((5, 4, 3))
a[:, 0] = mx.ones((5, 1, 3))
check_slices(np.zeros((2, 2, 2, 2)), 1, None, Ellipsis, None)
check_slices(
np.zeros((2, 2, 2, 2)), 1, np.array([0, 1]), Ellipsis, np.array([0, 1])
)
check_slices(
np.zeros((2, 2, 2, 2)),
np.arange(2 * 2 * 2).reshape(2, 2, 2),
np.array([0, 1]),
Ellipsis,
np.array([0, 1]),
)
# Check slice assign with negative indices works
a = mx.zeros((5, 5), mx.int32)
a[2:-2, 2:-2] = 4
self.assertEqual(a[2, 2].item(), 4)
# Check slice array slice
check_slices(
np.zeros((5, 4, 4)),
np.arange(4 * 2 * 3).reshape(4, 2, 3),
slice(0, 4),
np.array([1, 3]),
slice(None, -1),
)
check_slices(
np.zeros((5, 4, 4)),
np.arange(4 * 2 * 2).reshape(4, 2, 2),
slice(0, 4),
np.array([1, 3]),
slice(0, 4, 2),
)
check_slices(
np.zeros((1, 10, 4)),
np.arange(2 * 4).reshape(1, 2, 4),
slice(None, None, None),
np.array([1, 3]),
)
check_slices(
np.zeros((3, 4, 5, 3)),
np.arange(2 * 4 * 3 * 3).reshape(2, 4, 3, 3),
np.array([2, 1]),
slice(None, None, None),
slice(None, None, 2),
slice(None, None, None),
)
check_slices(
np.zeros((3, 4, 5, 3)),
np.arange(2 * 4 * 3 * 3).reshape(2, 4, 3, 3),
np.array([2, 1]),
slice(None, None, None),
slice(None, None, 2),
)
check_slices(np.zeros((5, 4, 3)), np.ones((5, 3)), slice(None), 0)
check_slices(np.zeros((5, 4, 3)), np.ones((5, 1, 3)), slice(None), slice(0, 1))
check_slices(
np.ones((3, 4, 4, 4)), np.zeros((4, 4)), 0, slice(0, 4), 3, slice(0, 4)
)
x = mx.zeros((2, 3, 4, 5, 3))
x[..., 0] = 1.0
self.assertTrue(mx.array_equal(x[..., 0], mx.ones((2, 3, 4, 5))))
x = mx.zeros((2, 3, 4, 5, 3))
x[:, 0] = 1.0
self.assertTrue(mx.array_equal(x[:, 0], mx.ones((2, 4, 5, 3))))
x = mx.zeros((2, 2, 2, 2, 2, 2))
x[0, 0] = 1
self.assertTrue(mx.array_equal(x[0, 0], mx.ones((2, 2, 2, 2))))
a = mx.zeros((2, 2, 2))
with self.assertRaises(ValueError):
a[:, None, :] = mx.ones((2, 2, 2))
# Ok, doesn't throw
a[:, None, :] = mx.ones((2, 1, 2, 2))
a[:, None, :] = mx.ones((2, 2))
a[:, None, 0] = mx.ones((2,))
a[:, None, 0] = mx.ones((1, 2))
def test_array_at(self):
a = mx.array(1)
a = a.at[None].add(1)
self.assertEqual(a.item(), 2)
a = mx.array([0, 1, 2])
a = a.at[1].add(2)
self.assertEqual(a.tolist(), [0, 3, 2])
a = a.at[mx.array([0, 0, 0, 0])].add(1)
self.assertEqual(a.tolist(), [4, 3, 2])
a = mx.zeros((10, 10))
a = a.at[0].add(mx.arange(10))
self.assertEqual(a[0].tolist(), list(range(10)))
a = mx.zeros((10, 10))
index_x = mx.array([0, 2, 3, 7])
index_y = mx.array([3, 3, 1, 2])
u = mx.random.uniform(shape=(4,))
a = a.at[index_x, index_y].add(u)
self.assertTrue(mx.allclose(a.sum(), u.sum()))
self.assertEqualArray(a.sum(), u.sum(), atol=1e-6, rtol=1e-5)
self.assertEqual(a[index_x, index_y].tolist(), u.tolist())
# Test all array.at ops
a = mx.random.uniform(shape=(10, 5, 2))
idx_x = mx.array([0, 4])
update = mx.ones((2, 5))
a[idx_x, :, 0] = 0
a = a.at[idx_x, :, 0].add(update)
self.assertEqualArray(a[idx_x, :, 0], update)
a = a.at[idx_x, :, 0].subtract(update)
self.assertEqualArray(a[idx_x, :, 0], mx.zeros_like(update))
a = a.at[idx_x, :, 0].add(2 * update)
self.assertEqualArray(a[idx_x, :, 0], 2 * update)
a = a.at[idx_x, :, 0].multiply(2 * update)
self.assertEqualArray(a[idx_x, :, 0], 4 * update)
a = a.at[idx_x, :, 0].divide(3 * update)
self.assertEqualArray(a[idx_x, :, 0], (4 / 3) * update)
a[idx_x, :, 0] = 5
update = mx.arange(10).reshape(2, 5)
a = a.at[idx_x, :, 0].maximum(update)
self.assertEqualArray(a[idx_x, :, 0], mx.maximum(a[idx_x, :, 0], update))
a[idx_x, :, 0] = 5
a = a.at[idx_x, :, 0].minimum(update)
self.assertEqualArray(a[idx_x, :, 0], mx.minimum(a[idx_x, :, 0], update))
update = mx.array([1.0, 2.0])[None, None, None]
src = mx.array([1.0, 2.0])[None, :]
src = src.at[0:1].add(update)
self.assertTrue(mx.array_equal(src, mx.array([[2.0, 4.0]])))
def test_slice_negative_step(self):
a_np = np.arange(20)
a_mx = mx.array(a_np)
# Basic negative slice
b_np = a_np[::-1]
b_mx = a_mx[::-1]
self.assertTrue(np.array_equal(b_np, b_mx))
# Bounds negative slice
b_np = a_np[-3:3:-1]
b_mx = a_mx[-3:3:-1]
self.assertTrue(np.array_equal(b_np, b_mx))
# Bounds negative slice
b_np = a_np[25:-50:-1]
b_mx = a_mx[25:-50:-1]
self.assertTrue(np.array_equal(b_np, b_mx))
# Jumping negative slice
b_np = a_np[::-3]
b_mx = a_mx[::-3]
self.assertTrue(np.array_equal(b_np, b_mx))
# Bounds and negative slice
b_np = a_np[-3:3:-3]
b_mx = a_mx[-3:3:-3]
self.assertTrue(np.array_equal(b_np, b_mx))
# Bounds and negative slice
b_np = a_np[25:-50:-3]
b_mx = a_mx[25:-50:-3]
self.assertTrue(np.array_equal(b_np, b_mx))
# Negative slice and ascending bounds
b_np = a_np[0:20:-3]
b_mx = a_mx[0:20:-3]
self.assertTrue(np.array_equal(b_np, b_mx))
# Multi-dim negative slices
a_np = np.arange(3 * 6 * 4).reshape(3, 6, 4)
a_mx = mx.array(a_np)
# Flip each dim
b_np = a_np[..., ::-1]
b_mx = a_mx[..., ::-1]
self.assertTrue(np.array_equal(b_np, b_mx))
b_np = a_np[:, ::-1, :]
b_mx = a_mx[:, ::-1, :]
self.assertTrue(np.array_equal(b_np, b_mx))
b_np = a_np[::-1, ...]
b_mx = a_mx[::-1, ...]
self.assertTrue(np.array_equal(b_np, b_mx))
# Flip pairs of dims
b_np = a_np[::-1, 1:5:2, ::-2]
b_mx = a_mx[::-1, 1:5:2, ::-2]
self.assertTrue(np.array_equal(b_np, b_mx))
b_np = a_np[::-1, ::-2, 1:5:2]
b_mx = a_mx[::-1, ::-2, 1:5:2]
self.assertTrue(np.array_equal(b_np, b_mx))
# Flip all dims
b_np = a_np[::-1, ::-3, ::-2]
b_mx = a_mx[::-1, ::-3, ::-2]
self.assertTrue(np.array_equal(b_np, b_mx))
def test_api(self):
x = mx.array(np.random.rand(10, 10, 10))
ops = [
("reshape", (100, -1)),
"square",
"sqrt",
"rsqrt",
"reciprocal",
"exp",
"log",
"sin",
"cos",
"log1p",
"abs",
"log10",
"log2",
"conj",
("all", 1),
("any", 1),
("transpose", (0, 2, 1)),
("sum", 1),
("prod", 1),
("min", 1),
("max", 1),
("logcumsumexp", 1),
("logsumexp", 1),
("mean", 1),
("var", 1),
("argmin", 1),
("argmax", 1),
("cummax", 1),
("cummin", 1),
("cumprod", 1),
("cumsum", 1),
("diagonal", 0, 0, 1),
("flatten", 0, -1),
("moveaxis", 1, 2),
("round", 2),
("std", 1, True, 0),
("swapaxes", 1, 2),
]
for op in ops:
if isinstance(op, tuple):
op, *args = op
else:
args = tuple()
y1 = getattr(mx, op)(x, *args)
y2 = getattr(x, op)(*args)
self.assertEqual(y1.dtype, y2.dtype)
self.assertEqual(y1.shape, y2.shape)
self.assertTrue(mx.array_equal(y1, y2))
y1 = mx.split(x, 2)
y2 = x.split(2)
self.assertEqual(len(y1), 2)
self.assertEqual(len(y1), len(y2))
self.assertTrue(mx.array_equal(y1[0], y2[0]))
self.assertTrue(mx.array_equal(y1[1], y2[1]))
x = mx.array(np.random.rand(10, 10, 1))
y1 = mx.squeeze(x, axis=2)
y2 = x.squeeze(axis=2)
self.assertEqual(y1.shape, y2.shape)
self.assertTrue(mx.array_equal(y1, y2))
def test_memoryless_copy(self):
a_mx = mx.ones((2, 2))
b_mx = mx.broadcast_to(a_mx, (5, 2, 2))
# Make np arrays without copy
a_np = np.array(a_mx, copy=False)
b_np = np.array(b_mx, copy=False)
# Check that we get read-only array that does not own the underlying data
self.assertFalse(a_np.flags.owndata)
self.assertTrue(a_np.flags.writeable)
# Check contents
self.assertTrue(np.array_equal(np.ones((2, 2), dtype=np.float32), a_np))
self.assertTrue(np.array_equal(np.ones((5, 2, 2), dtype=np.float32), b_np))
# Check strides
self.assertSequenceEqual(b_np.strides, (0, 8, 4))
def test_np_array_conversion_copies_by_default(self):
a_mx = mx.ones((2, 2))
a_np = np.array(a_mx)
self.assertTrue(a_np.flags.owndata)
self.assertTrue(a_np.flags.writeable)
def test_buffer_protocol(self):
dtypes_list = [
(mx.bool_, np.bool_, None),
(mx.uint8, np.uint8, np.iinfo),
(mx.uint16, np.uint16, np.iinfo),
(mx.uint32, np.uint32, np.iinfo),
(mx.uint64, np.uint64, np.iinfo),
(mx.int8, np.int8, np.iinfo),
(mx.int16, np.int16, np.iinfo),
(mx.int32, np.int32, np.iinfo),
(mx.int64, np.int64, np.iinfo),
(mx.float16, np.float16, np.finfo),
(mx.float32, np.float32, np.finfo),
(mx.complex64, np.complex64, np.finfo),
]
for mlx_dtype, np_dtype, info_fn in dtypes_list:
a_np = np.random.uniform(low=0, high=100, size=(3, 4)).astype(np_dtype)
if info_fn is not None:
info = info_fn(np_dtype)
a_np[0, 0] = info.min
a_np[0, 1] = info.max
a_mx = mx.array(a_np)
for f in [lambda x: x, lambda x: x.T]:
mv_mx = memoryview(f(a_mx))
mv_np = memoryview(f(a_np))
self.assertEqual(mv_mx.strides, mv_np.strides, f"{mlx_dtype}{np_dtype}")
self.assertEqual(mv_mx.shape, mv_np.shape, f"{mlx_dtype}{np_dtype}")
# correct buffer format for 8 byte (unsigned) 'long long' is Q/q, see
# https://docs.python.org/3.10/library/struct.html#format-characters
# numpy returns L/l, as 'long' is equivalent to 'long long' on 64bit machines, so q and l are equivalent
# see https://github.com/pybind/pybind11/issues/1908
if np_dtype == np.uint64:
self.assertEqual(mv_mx.format, "Q", f"{mlx_dtype}{np_dtype}")
elif np_dtype == np.int64:
self.assertEqual(mv_mx.format, "q", f"{mlx_dtype}{np_dtype}")
else:
self.assertEqual(
mv_mx.format, mv_np.format, f"{mlx_dtype}{np_dtype}"
)
self.assertFalse(mv_mx.readonly)
back_to_npy = np.array(mv_mx, copy=False)
self.assertEqualArray(
back_to_npy,
f(a_np),
atol=0,
rtol=0,
)
# extra test for bfloat16, which is not numpy convertible
a_mx = mx.random.uniform(low=0, high=100, shape=(3, 4), dtype=mx.bfloat16)
mv_mx = memoryview(a_mx)
self.assertEqual(mv_mx.strides, (8, 2))
self.assertEqual(mv_mx.shape, (3, 4))
self.assertEqual(mv_mx.format, "B")
with self.assertRaises(RuntimeError) as cm:
np.array(a_mx)
e = cm.exception
self.assertTrue("Item size 2 for PEP 3118 buffer format string" in str(e))
# Test buffer protocol with non-arrays ie bytes
a = ord("a") * 257 + mx.arange(10).astype(mx.int16)
ab = bytes(a)
self.assertEqual(len(ab), 20)
if sys.byteorder == "little":
self.assertEqual(b"aaaaaaaaaa", ab[1::2])
self.assertEqual(b"abcdefghij", ab[::2])
else:
self.assertEqual(b"aaaaaaaaaa", ab[::2])
self.assertEqual(b"abcdefghij", ab[1::2])
def test_buffer_protocol_ref_counting(self):
a = mx.arange(3)
wr = weakref.ref(a)
self.assertIsNotNone(wr())
mv = memoryview(a)
a = None
self.assertIsNotNone(wr())
mv = None
self.assertIsNone(wr())
def test_array_view_ref_counting(self):
a = mx.arange(3)
wr = weakref.ref(a)
self.assertIsNotNone(wr())
a_np = np.array(a, copy=False)
a = None
self.assertIsNotNone(wr())
a_np = None
self.assertIsNone(wr())
@unittest.skipIf(not has_tf, "requires TensorFlow")
def test_buffer_protocol_tf(self):
dtypes_list = [
(
mx.bool_,
tf.bool,
np.bool_,
),
(
mx.uint8,
tf.uint8,
np.uint8,
),
(
mx.uint16,
tf.uint16,
np.uint16,
),
(
mx.uint32,
tf.uint32,
np.uint32,
),
(mx.uint64, tf.uint64, np.uint64),
(mx.int8, tf.int8, np.int8),
(mx.int16, tf.int16, np.int16),
(mx.int32, tf.int32, np.int32),
(mx.int64, tf.int64, np.int64),
(mx.float16, tf.float16, np.float16),
(mx.float32, tf.float32, np.float32),
(
mx.complex64,
tf.complex64,
np.complex64,
),
]
for mlx_dtype, tf_dtype, np_dtype in dtypes_list:
a_np = np.random.uniform(low=0, high=100, size=(3, 4)).astype(np_dtype)
a_tf = tf.constant(a_np, dtype=tf_dtype)
a_mx = mx.array(np.array(a_tf))
for f in [
lambda x: x,
lambda x: tf.transpose(x) if isinstance(x, tf.Tensor) else x.T,
]:
mv_mx = memoryview(f(a_mx))
mv_tf = memoryview(f(a_tf))
if (mv_mx.c_contiguous and mv_tf.c_contiguous) or (
mv_mx.f_contiguous and mv_tf.f_contiguous
):
self.assertEqual(
mv_mx.strides, mv_tf.strides, f"{mlx_dtype}{tf_dtype}"
)
self.assertEqual(mv_mx.shape, mv_tf.shape, f"{mlx_dtype}{tf_dtype}")
self.assertFalse(mv_mx.readonly)
back_to_npy = np.array(mv_mx)
self.assertEqualArray(
back_to_npy,
f(a_tf),
atol=0,
rtol=0,
)
def test_logical_overloads(self):
with self.assertRaises(ValueError):
mx.array(1.0) & mx.array(1)
with self.assertRaises(ValueError):
mx.array(1.0) | mx.array(1)
self.assertEqual((mx.array(True) & True).item(), True)
self.assertEqual((mx.array(True) & False).item(), False)
self.assertEqual((mx.array(True) | False).item(), True)
self.assertEqual((mx.array(False) | False).item(), False)
self.assertEqual((~mx.array(False)).item(), True)
self.assertEqual((mx.array(False) ^ True).item(), True)
def test_inplace(self):
iops = [
"__iadd__",
"__isub__",
"__imul__",
"__ifloordiv__",
"__imod__",
"__ipow__",
"__ixor__",
]
for op in iops:
a = mx.array([1, 2, 3])
a_np = np.array(a)
b = a
b = getattr(a, op)(3)
self.assertTrue(mx.array_equal(a, b))
out_np = getattr(a_np, op)(3)
self.assertTrue(np.array_equal(out_np, a))
with self.assertRaises(ValueError):
a = mx.array([1])
a /= 1
a = mx.array([2.0])
b = a
b /= 2
self.assertEqual(b.item(), 1.0)
self.assertEqual(b.item(), a.item())
a = mx.array(True)
b = a
b &= False
self.assertEqual(b.item(), False)
self.assertEqual(b.item(), a.item())
a = mx.array(False)
b = a
b |= True
self.assertEqual(b.item(), True)
self.assertEqual(b.item(), a.item())
# In-place matmul on its own
a = mx.array([[1.0, 2.0], [3.0, 4.0]])
b = a
b @= a
self.assertTrue(mx.array_equal(a, b))
a = mx.array(False)
a ^= True
self.assertEqual(a.item(), True)
def test_inplace_preserves_ids(self):
a = mx.array([1.0])
orig_id = id(a)
a += mx.array(2.0)
self.assertEqual(id(a), orig_id)
a[0] = 2.0
self.assertEqual(id(a), orig_id)
a -= mx.array(3.0)
self.assertEqual(id(a), orig_id)
a *= mx.array(3.0)
self.assertEqual(id(a), orig_id)
def test_load_from_pickled_np(self):
a = np.array([1, 2, 3], dtype=np.int32)
b = pickle.loads(pickle.dumps(a))
self.assertTrue(mx.array_equal(mx.array(a), mx.array(b)))
a = np.array([1.0, 2.0, 3.0], dtype=np.float16)
b = pickle.loads(pickle.dumps(a))
self.assertTrue(mx.array_equal(mx.array(a), mx.array(b)))
def test_multi_output_leak(self):
def fun():
a = mx.zeros((2**20))
mx.eval(a)
b, c = mx.divmod(a, a)
del b, c
fun()
mx.synchronize()
peak_1 = mx.get_peak_memory()
fun()
mx.synchronize()
peak_2 = mx.get_peak_memory()
self.assertEqual(peak_1, peak_2)
def fun():
a = mx.array([1.0, 2.0, 3.0, 4.0])
b, _ = mx.divmod(a, a)
return mx.log(b)
fun()
mx.synchronize()
peak_1 = mx.get_peak_memory()
fun()
mx.synchronize()
peak_2 = mx.get_peak_memory()
self.assertEqual(peak_1, peak_2)
def test_add_numpy(self):
x = mx.array(1)
y = np.array(2, dtype=np.int32)
z = x + y
self.assertEqual(z.dtype, mx.int32)
self.assertEqual(z.item(), 3)
def test_dlpack(self):
x = mx.array(1, dtype=mx.int32)
y = np.from_dlpack(x)
self.assertTrue(mx.array_equal(y, x))
x = mx.array([[1.0, 2.0], [3.0, 4.0]])
y = np.from_dlpack(x)
self.assertTrue(mx.array_equal(y, x))
x = mx.arange(16).reshape(4, 4)
x = x[::2, ::2]
y = np.from_dlpack(x)
self.assertTrue(mx.array_equal(y, x))
def test_getitem_with_list(self):
a = mx.array([1, 2, 3, 4, 5])
idx = [0, 2, 4]
self.assertTrue(np.array_equal(a[idx], np.array(a)[idx]))
a = mx.array([[1, 2], [3, 4], [5, 6]])
idx = [0, 2]
self.assertTrue(np.array_equal(a[idx], np.array(a)[idx]))
a = mx.arange(10).reshape(5, 2)
idx = [0, 2, 4]
self.assertTrue(np.array_equal(a[idx], np.array(a)[idx]))
idx = [0, 2]
a = mx.arange(16).reshape(4, 4)
anp = np.array(a)
self.assertTrue(np.array_equal(a[idx, 0], anp[idx, 0]))
self.assertTrue(np.array_equal(a[idx, :], anp[idx, :]))
self.assertTrue(np.array_equal(a[0, idx], anp[0, idx]))
self.assertTrue(np.array_equal(a[:, idx], anp[:, idx]))
def test_setitem_with_list(self):
a = mx.array([1, 2, 3, 4, 5])
anp = np.array(a)
idx = [0, 2, 4]
a[idx] = 3
anp[idx] = 3
self.assertTrue(np.array_equal(a, anp))
a = mx.array([[1, 2], [3, 4], [5, 6]])
idx = [0, 2]
anp = np.array(a)
a[idx] = 3
anp[idx] = 3
self.assertTrue(np.array_equal(a, anp))
a = mx.arange(10).reshape(5, 2)
idx = [0, 2, 4]
anp = np.array(a)
a[idx] = 3
anp[idx] = 3
self.assertTrue(np.array_equal(a, anp))
idx = [0, 2]
a = mx.arange(16).reshape(4, 4)
anp = np.array(a)
a[idx, 0] = 1
anp[idx, 0] = 1
self.assertTrue(np.array_equal(a, anp))
a[idx, :] = 2
anp[idx, :] = 2
self.assertTrue(np.array_equal(a, anp))
a[0, idx] = 3
anp[0, idx] = 3
self.assertTrue(np.array_equal(a, anp))
a[:, idx] = 4
anp[:, idx] = 4
self.assertTrue(np.array_equal(a, anp))
def test_array_namespace(self):
a = mx.array(1.0)
api = a.__array_namespace__()
self.assertTrue(hasattr(api, "array"))
self.assertTrue(hasattr(api, "add"))
def test_to_scalar(self):
a = mx.array(1)
self.assertEqual(int(a), 1)
self.assertEqual(float(a), 1)
a = mx.array(1.5)
self.assertEqual(float(a), 1.5)
self.assertEqual(int(a), 1)
a = mx.zeros((2, 1))
with self.assertRaises(ValueError):
float(a)
with self.assertRaises(ValueError):
int(a)
def test_format(self):
a = mx.arange(3)
self.assertEqual(f"{a[0]:.2f}", "0.00")
b = mx.array(0.35487)
self.assertEqual(f"{b:.1f}", "0.4")
with self.assertRaises(TypeError):
s = f"{a:.2f}"
a = mx.array([1, 2, 3])
self.assertEqual(f"{a}", "array([1, 2, 3], dtype=int32)")
def test_deep_graphs(self):
# The following tests should simply run cleanly without a segfault or
# crash due to exceeding recursion depth limits.
# Deep graph destroyed without eval
x = mx.array([1.0, 2.0])
for _ in range(100_000):
x = mx.sin(x)
del x
# Duplicate input deep graph destroyed without eval
x = mx.array([1.0, 2.0])
for _ in range(100_000):
x = x + x
# Deep graph with siblings destroyed without eval
x = mx.array([1, 2])
for _ in range(100_000):
x = mx.concatenate(mx.split(x, 2))
del x
# Deep graph with eval
x = mx.array([1.0, 2.0])
for _ in range(100_000):
x = mx.sin(x)
mx.eval(x)
def test_siblings_without_eval(self):
def get_mem():
if platform.system() == "Windows":
process = psutil.Process(os.getpid())
return process.memory_info().peak_wset
else:
return resource.getrusage(resource.RUSAGE_SELF).ru_maxrss
key = mx.array([1, 2])
def t():
a, b = mx.split(key, 2)
a = mx.reshape(a, [])
b = mx.reshape(b, [])
return b
t()
gc.collect()
expected = get_mem()
for _ in range(100):
t()
used = get_mem()
self.assertEqual(expected, used)
def test_scalar_integer_conversion_overflow(self):
y = mx.array(2000000000, dtype=mx.int32)
x = 3000000000
with self.assertRaises(ValueError):
y + x
with self.assertRaises(ValueError):
mx.add(y, x)
def test_real_imag(self):
x = mx.array([1.0])
self.assertEqual(x.real.item(), 1.0)
self.assertEqual(x.imag.item(), 0.0)
x = mx.array([1.0 + 1.0j])
self.assertEqual(x.imag.item(), 1.0)
self.assertEqual(x.real.item(), 1.0)
if __name__ == "__main__":
unittest.main()