mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-11-04 18:48:15 +08:00 
			
		
		
		
	* Organize and collect metal subroutine templates and elements in `metal/kernels/steel/` * Update gemm elements for better performance * Add split-K specialization for gemm * Add `addmm` primitive, op and bindings for fused matmul and bias addition * Update tests and benchmarks as needed
		
			
				
	
	
		
			194 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			194 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# Copyright © 2023 Apple Inc.
 | 
						|
 | 
						|
import argparse
 | 
						|
import math
 | 
						|
import os
 | 
						|
import subprocess
 | 
						|
import time
 | 
						|
 | 
						|
import mlx.core as mx
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
 | 
						|
device_name = subprocess.check_output(["sysctl", "-n", "machdep.cpu.brand_string"])
 | 
						|
device_name = device_name.decode("utf-8").strip("\n")
 | 
						|
 | 
						|
N_warmup = 8
 | 
						|
N_iter_bench = 80
 | 
						|
N_iter_func = 5
 | 
						|
 | 
						|
 | 
						|
def bench(f, a, b):
 | 
						|
    for i in range(N_warmup):
 | 
						|
        f(a, b)
 | 
						|
    torch.mps.synchronize()
 | 
						|
 | 
						|
    s = time.perf_counter_ns()
 | 
						|
    for i in range(N_iter_bench):
 | 
						|
        f(a, b)
 | 
						|
    e = time.perf_counter_ns()
 | 
						|
    return (e - s) * 1e-9
 | 
						|
 | 
						|
 | 
						|
def gemm_nn_mlx(a, b):
 | 
						|
    ys = []
 | 
						|
    for i in range(N_iter_func):
 | 
						|
        y = a @ b
 | 
						|
        ys.append(y)
 | 
						|
    mx.eval(ys)
 | 
						|
    return ys
 | 
						|
 | 
						|
 | 
						|
def gemm_nt_mlx(a, b):
 | 
						|
    ys = []
 | 
						|
    for i in range(N_iter_func):
 | 
						|
        y = a @ b.transpose((0, 2, 1))
 | 
						|
        ys.append(y)
 | 
						|
    mx.eval(ys)
 | 
						|
    return ys
 | 
						|
 | 
						|
 | 
						|
def gemm_tn_mlx(a, b):
 | 
						|
    ys = []
 | 
						|
    for i in range(N_iter_func):
 | 
						|
        y = a.transpose((0, 2, 1)) @ b
 | 
						|
        ys.append(y)
 | 
						|
    mx.eval(ys)
 | 
						|
    return ys
 | 
						|
 | 
						|
 | 
						|
def gemm_tt_mlx(a, b):
 | 
						|
    ys = []
 | 
						|
    for i in range(N_iter_func):
 | 
						|
        y = a.transpose((0, 2, 1)) @ b.transpose((0, 2, 1))
 | 
						|
        ys.append(y)
 | 
						|
    mx.eval(ys)
 | 
						|
    return ys
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def gemm_nn_torch(a, b):
 | 
						|
    ys = []
 | 
						|
    for i in range(N_iter_func):
 | 
						|
        y = a @ b
 | 
						|
        ys.append(y)
 | 
						|
    torch.mps.synchronize()
 | 
						|
    return ys
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def gemm_nt_torch(a, b):
 | 
						|
    ys = []
 | 
						|
    for i in range(N_iter_func):
 | 
						|
        y = a @ b.transpose(-1, -2)
 | 
						|
        ys.append(y)
 | 
						|
    torch.mps.synchronize()
 | 
						|
    return ys
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def gemm_tn_torch(a, b):
 | 
						|
    ys = []
 | 
						|
    for i in range(N_iter_func):
 | 
						|
        y = a.transpose(-1, -2) @ b
 | 
						|
        ys.append(y)
 | 
						|
    torch.mps.synchronize()
 | 
						|
    return ys
 | 
						|
 | 
						|
 | 
						|
@torch.no_grad()
 | 
						|
def gemm_tt_torch(a, b):
 | 
						|
    ys = []
 | 
						|
    for i in range(N_iter_func):
 | 
						|
        y = a.transpose(-1, -2) @ b.transpose(-1, -2)
 | 
						|
        ys.append(y)
 | 
						|
    torch.mps.synchronize()
 | 
						|
    return ys
 | 
						|
 | 
						|
 | 
						|
def bench_shape(B, M, N, K, np_dtype, transpose="nn"):
 | 
						|
    shape_a = (B, M, K) if transpose[0] == "n" else (B, K, M)
 | 
						|
    shape_b = (B, K, N) if transpose[1] == "n" else (B, N, K)
 | 
						|
 | 
						|
    a_np = np.random.normal(0.0, 1.0 / math.sqrt(M + K), shape_a).astype(np_dtype)
 | 
						|
    b_np = np.random.normal(0.0, 1.0 / math.sqrt(N + K), shape_b).astype(np_dtype)
 | 
						|
 | 
						|
    a_mx = mx.array(a_np)
 | 
						|
    b_mx = mx.array(b_np)
 | 
						|
 | 
						|
    a_pt = torch.from_numpy(a_np).to("mps")
 | 
						|
    b_pt = torch.from_numpy(b_np).to("mps")
 | 
						|
 | 
						|
    torch.mps.synchronize()
 | 
						|
 | 
						|
    f_mx = {
 | 
						|
        "nn": gemm_nn_mlx,
 | 
						|
        "nt": gemm_nt_mlx,
 | 
						|
        "tn": gemm_tn_mlx,
 | 
						|
        "tt": gemm_tt_mlx,
 | 
						|
    }[transpose]
 | 
						|
 | 
						|
    f_pt = {
 | 
						|
        "nn": gemm_nn_torch,
 | 
						|
        "nt": gemm_nt_torch,
 | 
						|
        "tn": gemm_tn_torch,
 | 
						|
        "tt": gemm_tt_torch,
 | 
						|
    }[transpose]
 | 
						|
 | 
						|
    time_torch = bench(f_pt, a_pt, b_pt)
 | 
						|
    time_mlx = bench(f_mx, a_mx, b_mx)
 | 
						|
 | 
						|
    t_a = (0, 1, 2) if transpose[0] == "n" else (0, 2, 1)
 | 
						|
    t_b = (0, 1, 2) if transpose[1] == "n" else (0, 2, 1)
 | 
						|
 | 
						|
    c_mlx = a_mx.transpose(t_a) @ b_mx.transpose(t_b)
 | 
						|
    c_npy = a_np.transpose(t_a).astype(np.float32) @ b_np.transpose(t_b).astype(
 | 
						|
        np.float32
 | 
						|
    )
 | 
						|
 | 
						|
    atol = 1e-5 if np_dtype == np.float32 else 1e-4
 | 
						|
 | 
						|
    if not np.allclose(c_mlx, c_npy.astype(np_dtype), atol=atol):
 | 
						|
        print(
 | 
						|
            f"Failed at {(B, M, N, K)} [transpose = {transpose}] with max(|a - b|) = {np.max(np.abs(c_npy - c_mlx))}"
 | 
						|
        )
 | 
						|
 | 
						|
    return time_mlx, time_torch
 | 
						|
 | 
						|
 | 
						|
def get_gflop_count(B, M, N, K):
 | 
						|
    return float(2.0 * N_iter_bench * N_iter_func * B * M * N * K) / float(1024.0**3)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    parser = argparse.ArgumentParser(description="Run gemm benchmarks")
 | 
						|
 | 
						|
    dtypes = ("float32", "float16")
 | 
						|
    transposes = ("nn", "nt", "tn")
 | 
						|
    shapes = (
 | 
						|
        (16, 234, 768, 3072),
 | 
						|
        (1, 64, 64, 25344),
 | 
						|
        (16, 1024, 1024, 1024),
 | 
						|
        (1, 1024, 1024, 2048),
 | 
						|
        (4, 1024, 1024, 4096),
 | 
						|
        (4, 1024, 4096, 1024),
 | 
						|
        (1, 4096, 4096, 4096),
 | 
						|
    )
 | 
						|
 | 
						|
    for dtype in dtypes:
 | 
						|
        for transpose in transposes:
 | 
						|
            for B, M, N, K in shapes:
 | 
						|
                np_dtype = getattr(np, dtype)
 | 
						|
                time_mlx, time_torch = bench_shape(B, M, N, K, np_dtype, transpose)
 | 
						|
 | 
						|
                gflop_count = get_gflop_count(B, M, N, K)
 | 
						|
                gflops_mx = gflop_count / (time_mlx)
 | 
						|
                gflops_pt = gflop_count / (time_torch)
 | 
						|
                diff = gflops_mx / gflops_pt - 1.0
 | 
						|
 | 
						|
                print(
 | 
						|
                    f"{B:3d}, {M:4d}, {N:4d}, {K:4d}, {dtype}, {transpose}, {gflops_pt:05.3f}, {gflops_mx:05.3f}, {100. * diff:+5.2f}%"
 | 
						|
                )
 | 
						|
                if gflops_pt >= 2.0 * gflops_mx:
 | 
						|
                    print("ATTENTION ^^^^^^^")
 |