mlx/mlx/backend/common/binary.cpp
Awni Hannun 86f495985b
Add bitwise ops (#1037)
* bitwise ops

* fix tests
2024-04-26 22:03:42 -07:00

297 lines
8.0 KiB
C++

// Copyright © 2023 Apple Inc.
#include <cassert>
#include <cmath>
#include <sstream>
#include "mlx/allocator.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/binary_two.h"
#include "mlx/backend/common/ops.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
namespace {
template <typename T, typename U, typename Op>
void comparison_op(const array& a, const array& b, array& out, Op op) {
DefaultScalarVector<T, U, Op> opsv(op);
DefaultVectorScalar<T, U, Op> opvs(op);
DefaultVectorVector<T, U, Op> opvv(op);
binary_op<T, U>(a, b, out, op, opsv, opvs, opvv);
}
template <typename Op>
void comparison_op(const array& a, const array& b, array& out, Op op) {
switch (a.dtype()) {
case bool_:
comparison_op<bool, bool>(a, b, out, op);
break;
case uint8:
comparison_op<uint8_t, bool>(a, b, out, op);
break;
case uint16:
comparison_op<uint16_t, bool>(a, b, out, op);
break;
case uint32:
comparison_op<uint32_t, bool>(a, b, out, op);
break;
case uint64:
comparison_op<uint64_t, bool>(a, b, out, op);
break;
case int8:
comparison_op<int8_t, bool>(a, b, out, op);
break;
case int16:
comparison_op<int16_t, bool>(a, b, out, op);
break;
case int32:
comparison_op<int32_t, bool>(a, b, out, op);
break;
case int64:
comparison_op<int64_t, bool>(a, b, out, op);
break;
case float16:
comparison_op<float16_t, bool>(a, b, out, op);
break;
case float32:
comparison_op<float, bool>(a, b, out, op);
break;
case bfloat16:
comparison_op<bfloat16_t, bool>(a, b, out, op);
break;
case complex64:
comparison_op<complex64_t, bool>(a, b, out, op);
break;
}
}
} // namespace
void Add::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Add());
}
void DivMod::eval(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
auto integral_op = [](auto x, auto y) {
return std::make_pair(x / y, x % y);
};
auto float_op = [](auto x, auto y) {
return std::make_pair(std::trunc(x / y), std::fmod(x, y));
};
switch (outputs[0].dtype()) {
case bool_:
binary_op<bool>(a, b, outputs, integral_op);
case uint8:
binary_op<uint8_t>(a, b, outputs, integral_op);
break;
case uint16:
binary_op<uint16_t>(a, b, outputs, integral_op);
break;
case uint32:
binary_op<uint32_t>(a, b, outputs, integral_op);
break;
case uint64:
binary_op<uint64_t>(a, b, outputs, integral_op);
break;
case int8:
binary_op<int8_t>(a, b, outputs, integral_op);
break;
case int16:
binary_op<int16_t>(a, b, outputs, integral_op);
break;
case int32:
binary_op<int32_t>(a, b, outputs, integral_op);
break;
case int64:
binary_op<int64_t>(a, b, outputs, integral_op);
break;
case float16:
binary_op<float16_t>(a, b, outputs, float_op);
break;
case float32:
binary_op<float>(a, b, outputs, float_op);
break;
case bfloat16:
binary_op<bfloat16_t>(a, b, outputs, float_op);
break;
case complex64:
// Should never get here
throw std::runtime_error("[DivMod] Complex type not supported");
break;
}
}
void Divide::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Divide());
}
void Remainder::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Remainder());
}
void Equal::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
if (equal_nan_) {
comparison_op(inputs[0], inputs[1], out, detail::NaNEqual());
} else {
comparison_op(inputs[0], inputs[1], out, detail::Equal());
}
}
void Greater::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(inputs[0], inputs[1], out, detail::Greater());
}
void GreaterEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(inputs[0], inputs[1], out, detail::GreaterEqual());
}
void Less::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(inputs[0], inputs[1], out, detail::Less());
}
void LessEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(inputs[0], inputs[1], out, detail::LessEqual());
}
void LogAddExp::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (out.dtype() == float32) {
binary_op<float>(a, b, out, detail::LogAddExp());
} else if (out.dtype() == float16) {
binary_op<float16_t>(a, b, out, detail::LogAddExp());
} else if (out.dtype() == bfloat16) {
binary_op<bfloat16_t>(a, b, out, detail::LogAddExp());
} else if (issubdtype(out.dtype(), inexact)) {
std::ostringstream err;
err << "[logaddexp] Does not support " << out.dtype();
throw std::invalid_argument(err.str());
} else {
throw std::invalid_argument(
"[logaddexp] Cannot compute logaddexp for arrays with"
" non floating point type.");
}
}
void Maximum::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Maximum());
}
void Minimum::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Minimum());
}
void Multiply::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Multiply());
}
void NotEqual::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
comparison_op(inputs[0], inputs[1], out, detail::NotEqual());
}
void Power::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Power());
}
void Subtract::eval(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
binary(a, b, out, detail::Subtract());
}
void BitwiseBinary::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
auto dispatch_type = [&a, &b, &out](auto op) {
switch (out.dtype()) {
case bool_:
binary_op<bool>(a, b, out, op);
case uint8:
binary_op<uint8_t>(a, b, out, op);
break;
case uint16:
binary_op<uint16_t>(a, b, out, op);
break;
case uint32:
binary_op<uint32_t>(a, b, out, op);
break;
case uint64:
binary_op<uint64_t>(a, b, out, op);
break;
case int8:
binary_op<int8_t>(a, b, out, op);
break;
case int16:
binary_op<int16_t>(a, b, out, op);
break;
case int32:
binary_op<int32_t>(a, b, out, op);
break;
case int64:
binary_op<int64_t>(a, b, out, op);
break;
default:
throw std::runtime_error(
"[BitwiseBinary::eval_cpu] Type not supported");
break;
}
};
switch (op_) {
case BitwiseBinary::And:
dispatch_type(detail::BitwiseAnd());
break;
case BitwiseBinary::Or:
dispatch_type(detail::BitwiseOr());
break;
case BitwiseBinary::Xor:
dispatch_type(detail::BitwiseXor());
break;
case BitwiseBinary::LeftShift:
dispatch_type(detail::LeftShift());
break;
case BitwiseBinary::RightShift:
dispatch_type(detail::RightShift());
break;
}
}
} // namespace mlx::core