mlx/mlx/backend/accelerate/primitives.cpp
Jagrit Digani cec8661113
Add a SliceUpdate op and primitive (#850)
* Enable copy to work with int64 strides
* Fix uniform buffer indices or copy kernel arguments
* Update utils.h
* Remove manual unrolling of elem to loc loop
* GPU copy updated to handle negative strides
* Add slice update primitive
2024-03-20 10:39:25 -07:00

571 lines
17 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include <cmath>
#include <vecLib/vDSP.h>
#include <vecLib/vForce.h>
#include "mlx/allocator.h"
#include "mlx/backend/common/binary.h"
#include "mlx/backend/common/copy.h"
#include "mlx/backend/common/unary.h"
#include "mlx/primitives.h"
#define DEFAULT(primitive) \
void primitive::eval_cpu(const std::vector<array>& inputs, array& out) { \
primitive::eval(inputs, out); \
}
#define DEFAULT_MULTI(primitive) \
void primitive::eval_cpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
primitive::eval(inputs, outputs); \
}
namespace mlx::core {
// Use the default implementation for the following primitives
DEFAULT(Arange)
DEFAULT(ArgPartition)
DEFAULT(ArgReduce)
DEFAULT(ArgSort)
DEFAULT(AsStrided)
DEFAULT(Broadcast)
DEFAULT(Ceil)
DEFAULT(Concatenate)
DEFAULT(Copy)
DEFAULT_MULTI(CustomVJP)
DEFAULT_MULTI(Depends)
DEFAULT_MULTI(DivMod)
DEFAULT(NumberOfElements)
DEFAULT(Equal)
DEFAULT(Erf)
DEFAULT(ErfInv)
DEFAULT(FFT)
DEFAULT(Floor)
DEFAULT(Gather)
DEFAULT(Greater)
DEFAULT(GreaterEqual)
DEFAULT(Less)
DEFAULT(LessEqual)
DEFAULT(Load)
DEFAULT(LogicalNot)
DEFAULT(LogicalAnd)
DEFAULT(LogicalOr)
DEFAULT(LogAddExp)
DEFAULT(Maximum)
DEFAULT(Minimum)
DEFAULT(NotEqual)
DEFAULT(Pad)
DEFAULT(Partition)
DEFAULT_MULTI(QRF)
DEFAULT(RandomBits)
DEFAULT(Reshape)
DEFAULT(Remainder)
DEFAULT(Round)
DEFAULT(Scatter)
DEFAULT(Select)
DEFAULT(Sigmoid)
DEFAULT(Sign)
DEFAULT(Slice)
DEFAULT(SliceUpdate)
DEFAULT_MULTI(Split)
DEFAULT(Sort)
DEFAULT(StopGradient)
DEFAULT_MULTI(SVD)
DEFAULT(Transpose)
DEFAULT(Inverse)
void Abs::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
vDSP_vabs(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
} else if (in.dtype() == int32 && in.flags().contiguous) {
set_unary_output_data(in, out);
vDSP_vabsi(in.data<int>(), 1, out.data<int>(), 1, in.data_size());
} else {
eval(inputs, out);
}
}
void Add::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (a.dtype() == float32) {
binary(
a,
b,
out,
[](auto x, auto y) { return x + y; },
[](const auto* s, const auto* vec, auto* o, auto n) {
vDSP_vsadd((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
},
[](const auto* vec, const auto* s, auto* o, auto n) {
vDSP_vsadd((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vadd((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
});
} else if (a.dtype() == int32) {
binary(
a,
b,
out,
[](auto x, auto y) { return x + y; },
[](const auto* s, const auto* vec, auto* o, auto n) {
vDSP_vsaddi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
},
[](const auto* vec, const auto* s, auto* o, auto n) {
vDSP_vsaddi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vaddi((const int*)a, 1, (const int*)b, 1, (int*)o, 1, n);
});
} else {
binary(a, b, out, [](auto x, auto y) { return x + y; });
}
}
void ArcCos::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvacosf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcCosh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvacoshf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcSin::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvasinf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcSinh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvasinhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcTan::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvatanf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void ArcTanh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvatanhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void AsType::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.flags().contiguous) {
// Use accelerate functions if possible
if (in.dtype() == float32 && out.dtype() == uint32) {
set_unary_output_data(in, out);
vDSP_vfixu32(
in.data<float>(), 1, out.data<uint32_t>(), 1, in.data_size());
return;
} else if (in.dtype() == float32 && out.dtype() == int32) {
set_unary_output_data(in, out);
vDSP_vfix32(in.data<float>(), 1, out.data<int32_t>(), 1, in.data_size());
return;
} else if (in.dtype() == uint32 && out.dtype() == float32) {
set_unary_output_data(in, out);
vDSP_vfltu32(
in.data<uint32_t>(), 1, out.data<float>(), 1, in.data_size());
return;
} else if (in.dtype() == int32 && out.dtype() == float32) {
set_unary_output_data(in, out);
vDSP_vflt32(in.data<int32_t>(), 1, out.data<float>(), 1, in.data_size());
return;
}
}
eval(inputs, out);
}
void Cos::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvcosf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Cosh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvcoshf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Divide::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (a.dtype() == int32) {
binary(
a,
b,
out,
[](auto x, auto y) { return x / y; },
UseDefaultBinaryOp(),
[](const auto* vec, const auto* s, auto* o, auto n) {
vDSP_vsdivi((const int*)vec, 1, (const int*)s, (int*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vdivi((const int*)b, 1, (const int*)a, 1, (int*)o, 1, n);
});
} else if (a.dtype() == float32) {
binary(
a,
b,
out,
[](auto x, auto y) { return x / y; },
[](const auto* s, const auto* vec, auto* o, auto n) {
vDSP_svdiv((const float*)s, (const float*)vec, 1, (float*)o, 1, n);
},
[](const auto* vec, const auto* s, auto* o, auto n) {
vDSP_vsdiv((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vdiv((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
});
} else {
binary(a, b, out, [](auto x, auto y) { return x / y; });
}
}
void Exp::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
vvexpf(out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
} else if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::exp(x); });
} else {
throw std::invalid_argument(
"[exp] Cannot exponentiate elements in array"
" with non floating point type.");
}
}
void Full::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
assert(in.dtype() == out.dtype());
if (in.data_size() == 1 && out.dtype() == float32) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
vDSP_vfill(in.data<float>(), out.data<float>(), 1, out.size());
} else {
eval(inputs, out);
}
}
void Log::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
switch (base_) {
case Base::e:
vvlogf(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
break;
case Base::two:
vvlog2f(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
break;
case Base::ten:
vvlog10f(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
break;
}
} else {
eval(inputs, out);
}
}
void Log1p::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
vvlog1pf(
out.data<float>(), in.data<float>(), reinterpret_cast<int*>(&size));
} else if (is_floating_point(out.dtype())) {
unary_fp(in, out, [](auto x) { return std::log1p(x); });
} else {
throw std::invalid_argument(
"[log1p] Cannot compute log of elements in array with"
" non floating point type.");
}
}
void Multiply::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (a.dtype() == float32) {
binary(
a,
b,
out,
[](auto x, auto y) { return x * y; },
[](const auto* s, const auto* vec, auto* o, auto n) {
vDSP_vsmul((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
},
[](const auto* vec, const auto* s, auto* o, auto n) {
vDSP_vsmul((const float*)vec, 1, (const float*)s, (float*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vmul((const float*)a, 1, (const float*)b, 1, (float*)o, 1, n);
});
} else {
binary(a, b, out, [](auto x, auto y) { return x * y; });
}
}
void Negative::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
vDSP_vneg(in.data<float>(), 1, out.data<float>(), 1, in.data_size());
} else {
unary(in, out, [](auto x) { return -x; });
}
}
void Power::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (out.dtype() == float32 && a.flags().row_contiguous &&
b.flags().row_contiguous) {
int size = a.size();
if (a.is_donatable() && a.itemsize() == out.itemsize()) {
out.copy_shared_buffer(a);
} else if (b.is_donatable() && b.itemsize() == out.itemsize()) {
out.copy_shared_buffer(b);
} else {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
}
vvpowf(out.data<float>(), b.data<float>(), a.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Scan::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (reduce_type_ == Scan::Sum && out.dtype() == float32 &&
in.flags().row_contiguous && in.strides()[axis_] == 1 && !inclusive_) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
int stride = in.shape(axis_);
int count = in.size() / stride;
const float* input = in.data<float>();
float* output = out.data<float>();
float s = 1.0;
if (!reverse_) {
for (int i = 0; i < count; i++) {
vDSP_vrsum(input - 1, 1, &s, output, 1, stride);
input += stride;
output += stride;
}
} else {
for (int i = 0; i < count; i++) {
input += stride - 1;
output += stride - 1;
vDSP_vrsum(input + 1, -1, &s, output, -1, stride);
input++;
output++;
}
}
} else {
eval(inputs, out);
}
}
void Sin::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvsinf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Sinh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvsinhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Square::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
auto size = in.data_size();
vDSP_vsq(in.data<float>(), 1, out.data<float>(), 1, size);
} else {
unary(in, out, [](auto x) { return x * x; });
}
}
void Sqrt::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
auto& in = inputs[0];
if (in.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
if (recip_) {
vvrsqrtf(out.data<float>(), in.data<float>(), &size);
} else {
vvsqrtf(out.data<float>(), in.data<float>(), &size);
}
} else {
eval(inputs, out);
}
}
void Subtract::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 2);
auto& a = inputs[0];
auto& b = inputs[1];
if (a.dtype() == float32) {
binary(
a,
b,
out,
[](auto x, auto y) { return x - y; },
[](const auto* s, const auto* vec, auto* o, auto n) {
float minus_1 = -1;
vDSP_vsmsa(
(const float*)vec, 1, &minus_1, (const float*)s, (float*)o, 1, n);
},
[](const auto* vec, const auto* s, auto* o, auto n) {
float val = -(*s);
vDSP_vsadd((const float*)vec, 1, &val, (float*)o, 1, n);
},
[](const auto* a, const auto* b, auto* o, auto n) {
vDSP_vsub((const float*)b, 1, (const float*)a, 1, (float*)o, 1, n);
});
} else if (a.dtype() == int32) {
binary(
a,
b,
out,
[](auto x, auto y) { return x - y; },
UseDefaultBinaryOp(),
[](const auto* vec, const auto* s, auto* o, auto n) {
int val = -(*s);
vDSP_vsaddi((const int*)vec, 1, &val, (int*)o, 1, n);
},
UseDefaultBinaryOp());
} else {
binary(a, b, out, [](auto x, auto y) { return x - y; });
}
}
void Tan::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvtanf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
void Tanh::eval_cpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 1);
const auto& in = inputs[0];
if (out.dtype() == float32 && in.flags().contiguous) {
set_unary_output_data(in, out);
int size = in.data_size();
vvtanhf(out.data<float>(), in.data<float>(), &size);
} else {
eval(inputs, out);
}
}
} // namespace mlx::core