mlx/python/src/linalg.cpp
Abe Leininger 3835a428c5
Adds nuclear norm support (#1894)
* adjust norm unit test tolerance
2025-03-04 13:26:02 -08:00

589 lines
22 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <variant>
#include <nanobind/nanobind.h>
#include <nanobind/stl/pair.h>
#include <nanobind/stl/string.h>
#include <nanobind/stl/variant.h>
#include <nanobind/stl/vector.h>
#include "mlx/linalg.h"
namespace mx = mlx::core;
namespace nb = nanobind;
using namespace nb::literals;
void init_linalg(nb::module_& parent_module) {
auto m = parent_module.def_submodule(
"linalg", "mlx.core.linalg: linear algebra routines.");
m.def(
"norm",
[](const mx::array& a,
const std::variant<std::monostate, int, double, std::string>& ord_,
const std::variant<std::monostate, int, std::vector<int>>& axis_,
const bool keepdims,
const mx::StreamOrDevice stream) {
std::optional<std::vector<int>> axis = std::nullopt;
if (auto pv = std::get_if<int>(&axis_); pv) {
axis = std::vector<int>{*pv};
} else if (auto pv = std::get_if<std::vector<int>>(&axis_); pv) {
axis = *pv;
}
if (std::holds_alternative<std::monostate>(ord_)) {
return mx::linalg::norm(a, axis, keepdims, stream);
} else {
if (auto pv = std::get_if<std::string>(&ord_); pv) {
return mx::linalg::norm(a, *pv, axis, keepdims, stream);
}
double ord;
if (auto pv = std::get_if<int>(&ord_); pv) {
ord = *pv;
} else {
ord = std::get<double>(ord_);
}
return mx::linalg::norm(a, ord, axis, keepdims, stream);
}
},
nb::arg(),
"ord"_a = nb::none(),
"axis"_a = nb::none(),
"keepdims"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def norm(a: array, /, ord: Union[None, int, float, str] = None, axis: Union[None, int, list[int]] = None, keepdims: bool = False, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Matrix or vector norm.
This function computes vector or matrix norms depending on the value of
the ``ord`` and ``axis`` parameters.
Args:
a (array): Input array. If ``axis`` is ``None``, ``a`` must be 1-D or 2-D,
unless ``ord`` is ``None``. If both ``axis`` and ``ord`` are ``None``, the
2-norm of ``a.flatten`` will be returned.
ord (int, float or str, optional): Order of the norm (see table under ``Notes``).
If ``None``, the 2-norm (or Frobenius norm for matrices) will be computed
along the given ``axis``. Default: ``None``.
axis (int or list(int), optional): If ``axis`` is an integer, it specifies the
axis of ``a`` along which to compute the vector norms. If ``axis`` is a
2-tuple, it specifies the axes that hold 2-D matrices, and the matrix
norms of these matrices are computed. If `axis` is ``None`` then
either a vector norm (when ``a`` is 1-D) or a matrix norm (when ``a`` is
2-D) is returned. Default: ``None``.
keepdims (bool, optional): If ``True``, the axes which are normed over are
left in the result as dimensions with size one. Default ``False``.
Returns:
array: The output containing the norm(s).
Notes:
For values of ``ord < 1``, the result is, strictly speaking, not a
mathematical norm, but it may still be useful for various numerical
purposes.
The following norms can be calculated:
===== ============================ ==========================
ord norm for matrices norm for vectors
===== ============================ ==========================
None Frobenius norm 2-norm
'fro' Frobenius norm --
'nuc' nuclear norm --
inf max(sum(abs(x), axis=1)) max(abs(x))
-inf min(sum(abs(x), axis=1)) min(abs(x))
0 -- sum(x != 0)
1 max(sum(abs(x), axis=0)) as below
-1 min(sum(abs(x), axis=0)) as below
2 2-norm (largest sing. value) as below
-2 smallest singular value as below
other -- sum(abs(x)**ord)**(1./ord)
===== ============================ ==========================
The Frobenius norm is given by [1]_:
:math:`||A||_F = [\sum_{i,j} abs(a_{i,j})^2]^{1/2}`
The nuclear norm is the sum of the singular values.
Both the Frobenius and nuclear norm orders are only defined for
matrices and raise a ``ValueError`` when ``a.ndim != 2``.
References:
.. [1] G. H. Golub and C. F. Van Loan, *Matrix Computations*,
Baltimore, MD, Johns Hopkins University Press, 1985, pg. 15
Examples:
>>> import mlx.core as mx
>>> from mlx.core import linalg as la
>>> a = mx.arange(9) - 4
>>> a
array([-4, -3, -2, ..., 2, 3, 4], dtype=int32)
>>> b = a.reshape((3,3))
>>> b
array([[-4, -3, -2],
[-1, 0, 1],
[ 2, 3, 4]], dtype=int32)
>>> la.norm(a)
array(7.74597, dtype=float32)
>>> la.norm(b)
array(7.74597, dtype=float32)
>>> la.norm(b, 'fro')
array(7.74597, dtype=float32)
>>> la.norm(a, float("inf"))
array(4, dtype=float32)
>>> la.norm(b, float("inf"))
array(9, dtype=float32)
>>> la.norm(a, -float("inf"))
array(0, dtype=float32)
>>> la.norm(b, -float("inf"))
array(2, dtype=float32)
>>> la.norm(a, 1)
array(20, dtype=float32)
>>> la.norm(b, 1)
array(7, dtype=float32)
>>> la.norm(a, -1)
array(0, dtype=float32)
>>> la.norm(b, -1)
array(6, dtype=float32)
>>> la.norm(a, 2)
array(7.74597, dtype=float32)
>>> la.norm(a, 3)
array(5.84804, dtype=float32)
>>> la.norm(a, -3)
array(0, dtype=float32)
>>> c = mx.array([[ 1, 2, 3],
... [-1, 1, 4]])
>>> la.norm(c, axis=0)
array([1.41421, 2.23607, 5], dtype=float32)
>>> la.norm(c, axis=1)
array([3.74166, 4.24264], dtype=float32)
>>> la.norm(c, ord=1, axis=1)
array([6, 6], dtype=float32)
>>> m = mx.arange(8).reshape(2,2,2)
>>> la.norm(m, axis=(1,2))
array([3.74166, 11.225], dtype=float32)
>>> la.norm(m[0, :, :]), LA.norm(m[1, :, :])
(array(3.74166, dtype=float32), array(11.225, dtype=float32))
)pbdoc");
m.def(
"qr",
&mx::linalg::qr,
"a"_a,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def qr(a: array, *, stream: Union[None, Stream, Device] = None) -> Tuple[array, array]"),
R"pbdoc(
The QR factorization of the input matrix.
This function supports arrays with at least 2 dimensions. The matrices
which are factorized are assumed to be in the last two dimensions of
the input.
Args:
a (array): Input array.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
tuple(array, array): ``Q`` and ``R`` matrices such that ``Q @ R = a``.
Example:
>>> A = mx.array([[2., 3.], [1., 2.]])
>>> Q, R = mx.linalg.qr(A, stream=mx.cpu)
>>> Q
array([[-0.894427, -0.447214],
[-0.447214, 0.894427]], dtype=float32)
>>> R
array([[-2.23607, -3.57771],
[0, 0.447214]], dtype=float32)
)pbdoc");
m.def(
"svd",
[](const mx::array& a,
bool compute_uv /* = true */,
mx::StreamOrDevice s /* = {} */) -> nb::object {
const auto result = mx::linalg::svd(a, compute_uv, s);
if (result.size() == 1) {
return nb::cast(result.at(0));
} else {
return nb::make_tuple(result.at(0), result.at(1), result.at(2));
}
},
"a"_a,
"compute_uv"_a = true,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def svd(a: array, compute_uv: bool = True, *, stream: Union[None, Stream, Device] = None) -> Tuple[array, array, array]"),
R"pbdoc(
The Singular Value Decomposition (SVD) of the input matrix.
This function supports arrays with at least 2 dimensions. When the input
has more than two dimensions, the function iterates over all indices of the first
a.ndim - 2 dimensions and for each combination SVD is applied to the last two indices.
Args:
a (array): Input array.
compute_uv (bool, optional): If ``True``, return the ``U``, ``S``, and ``Vt`` components.
If ``False``, return only the ``S`` array. Default: ``True``.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
Union[tuple(array, ...), array]:
If compute_uv is ``True`` returns the ``U``, ``S``, and ``Vt`` matrices, such that
``A = U @ diag(S) @ Vt``. If compute_uv is ``False`` returns singular values array ``S``.
)pbdoc");
m.def(
"inv",
&mx::linalg::inv,
"a"_a,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def inv(a: array, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Compute the inverse of a square matrix.
This function supports arrays with at least 2 dimensions. When the input
has more than two dimensions, the inverse is computed for each matrix
in the last two dimensions of ``a``.
Args:
a (array): Input array.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
array: ``ainv`` such that ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``
)pbdoc");
m.def(
"tri_inv",
&mx::linalg::tri_inv,
"a"_a,
"upper"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def tri_inv(a: array, upper: bool = False, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Compute the inverse of a triangular square matrix.
This function supports arrays with at least 2 dimensions. When the input
has more than two dimensions, the inverse is computed for each matrix
in the last two dimensions of ``a``.
Args:
a (array): Input array.
upper (bool, optional): Whether the array is upper or lower triangular. Defaults to ``False``.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
array: ``ainv`` such that ``dot(a, ainv) = dot(ainv, a) = eye(a.shape[0])``
)pbdoc");
m.def(
"cholesky",
&mx::linalg::cholesky,
"a"_a,
"upper"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def cholesky(a: array, upper: bool = False, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Compute the Cholesky decomposition of a real symmetric positive semi-definite matrix.
This function supports arrays with at least 2 dimensions. When the input
has more than two dimensions, the Cholesky decomposition is computed for each matrix
in the last two dimensions of ``a``.
If the input matrix is not symmetric positive semi-definite, behaviour is undefined.
Args:
a (array): Input array.
upper (bool, optional): If ``True``, return the upper triangular Cholesky factor.
If ``False``, return the lower triangular Cholesky factor. Default: ``False``.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
array: If ``upper = False``, it returns a lower triangular ``L`` matrix such
that ``L @ L.T = a``. If ``upper = True``, it returns an upper triangular
``U`` matrix such that ``U.T @ U = a``.
)pbdoc");
m.def(
"cholesky_inv",
&mx::linalg::cholesky_inv,
"a"_a,
"upper"_a = false,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def cholesky_inv(L: array, upper: bool = False, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Compute the inverse of a real symmetric positive semi-definite matrix using it's Cholesky decomposition.
Let :math:`\mathbf{A}` be a real symmetric positive semi-definite matrix and :math:`\mathbf{L}` its Cholesky decomposition such that:
.. math::
\begin{aligned}
\mathbf{A} = \mathbf{L}\mathbf{L}^T
\end{aligned}
This function computes :math:`\mathbf{A}^{-1}`.
This function supports arrays with at least 2 dimensions. When the input
has more than two dimensions, the Cholesky inverse is computed for each matrix
in the last two dimensions of :math:`\mathbf{L}`.
If the input matrix is not a triangular matrix behaviour is undefined.
Args:
L (array): Input array.
upper (bool, optional): If ``True``, return the upper triangular Cholesky factor.
If ``False``, return the lower triangular Cholesky factor. Default: ``False``.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
array: :math:`\mathbf{A^{-1}}` where :math:`\mathbf{A} = \mathbf{L}\mathbf{L}^T`.
)pbdoc");
m.def(
"pinv",
&mx::linalg::pinv,
"a"_a,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def pinv(a: array, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Compute the (Moore-Penrose) pseudo-inverse of a matrix.
This function calculates a generalized inverse of a matrix using its
singular-value decomposition. This function supports arrays with at least 2 dimensions.
When the input has more than two dimensions, the inverse is computed for each
matrix in the last two dimensions of ``a``.
Args:
a (array): Input array.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
array: ``aplus`` such that ``a @ aplus @ a = a``
)pbdoc");
m.def(
"cross",
&mx::linalg::cross,
"a"_a,
"b"_a,
"axis"_a = -1,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def cross(a: array, b: array, axis: int = -1, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Compute the cross product of two arrays along a specified axis.
The cross product is defined for arrays with size 2 or 3 in the
specified axis. If the size is 2 then the third value is assumed
to be zero.
Args:
a (array): Input array.
b (array): Input array.
axis (int, optional): Axis along which to compute the cross
product. Default: ``-1``.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
array: The cross product of ``a`` and ``b`` along the specified axis.
)pbdoc");
m.def(
"eigvalsh",
&mx::linalg::eigvalsh,
"a"_a,
"UPLO"_a = "L",
nb::kw_only(),
"stream"_a = nb::none(),
R"pbdoc(
Compute the eigenvalues of a complex Hermitian or real symmetric matrix.
This function supports arrays with at least 2 dimensions. When the
input has more than two dimensions, the eigenvalues are computed for
each matrix in the last two dimensions.
Args:
a (array): Input array. Must be a real symmetric or complex
Hermitian matrix.
UPLO (str, optional): Whether to use the upper (``"U"``) or
lower (``"L"``) triangle of the matrix. Default: ``"L"``.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
array: The eigenvalues in ascending order.
Note:
The input matrix is assumed to be symmetric (or Hermitian). Only
the selected triangle is used. No checks for symmetry are performed.
Example:
>>> A = mx.array([[1., -2.], [-2., 1.]])
>>> eigenvalues = mx.linalg.eigvalsh(A, stream=mx.cpu)
>>> eigenvalues
array([-1., 3.], dtype=float32)
)pbdoc");
m.def(
"eigh",
[](const mx::array& a, const std::string UPLO, mx::StreamOrDevice s) {
auto result = mx::linalg::eigh(a, UPLO, s);
return nb::make_tuple(result.first, result.second);
},
"a"_a,
"UPLO"_a = "L",
nb::kw_only(),
"stream"_a = nb::none(),
R"pbdoc(
Compute the eigenvalues and eigenvectors of a complex Hermitian or
real symmetric matrix.
This function supports arrays with at least 2 dimensions. When the input
has more than two dimensions, the eigenvalues and eigenvectors are
computed for each matrix in the last two dimensions.
Args:
a (array): Input array. Must be a real symmetric or complex
Hermitian matrix.
UPLO (str, optional): Whether to use the upper (``"U"``) or
lower (``"L"``) triangle of the matrix. Default: ``"L"``.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
Tuple[array, array]:
A tuple containing the eigenvalues in ascending order and
the normalized eigenvectors. The column ``v[:, i]`` is the
eigenvector corresponding to the i-th eigenvalue.
Note:
The input matrix is assumed to be symmetric (or Hermitian). Only
the selected triangle is used. No checks for symmetry are performed.
Example:
>>> A = mx.array([[1., -2.], [-2., 1.]])
>>> w, v = mx.linalg.eigh(A, stream=mx.cpu)
>>> w
array([-1., 3.], dtype=float32)
>>> v
array([[ 0.707107, -0.707107],
[ 0.707107, 0.707107]], dtype=float32)
)pbdoc");
m.def(
"lu",
[](const mx::array& a, mx::StreamOrDevice s /* = {} */) {
auto result = mx::linalg::lu(a, s);
return nb::make_tuple(result.at(0), result.at(1), result.at(2));
},
"a"_a,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def lu(a: array, *, stream: Union[None, Stream, Device] = None) -> Tuple[array, array, array]"),
R"pbdoc(
Compute the LU factorization of the given matrix ``A``.
Note, unlike the default behavior of ``scipy.linalg.lu``, the pivots
are indices. To reconstruct the input use ``L[P, :] @ U`` for 2
dimensions or ``mx.take_along_axis(L, P[..., None], axis=-2) @ U``
for more than 2 dimensions.
To construct the full permuation matrix do:
.. code-block::
P = mx.put_along_axis(mx.zeros_like(L), p[..., None], mx.array(1.0), axis=-1)
Args:
a (array): Input array.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
tuple(array, array, array):
The ``p``, ``L``, and ``U`` arrays, such that ``A = L[P, :] @ U``
)pbdoc");
m.def(
"lu_factor",
&mx::linalg::lu_factor,
"a"_a,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def lu_factor(a: array, *, stream: Union[None, Stream, Device] = None) -> Tuple[array, array]"),
R"pbdoc(
Computes a compact representation of the LU factorization.
Args:
a (array): Input array.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
tuple(array, array): The ``LU`` matrix and ``pivots`` array.
)pbdoc");
m.def(
"solve",
&mx::linalg::solve,
"a"_a,
"b"_a,
nb::kw_only(),
"stream"_a = nb::none(),
nb::sig(
"def solve(a: array, b: array, *, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Compute the solution to a system of linear equations ``AX = B``.
Args:
a (array): Input array.
b (array): Input array.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
array: The unique solution to the system ``AX = B``.
)pbdoc");
m.def(
"solve_triangular",
&mx::linalg::solve_triangular,
"a"_a,
"b"_a,
nb::kw_only(),
"upper"_a = false,
"stream"_a = nb::none(),
nb::sig(
"def solve_triangular(a: array, b: array, *, upper: bool = False, stream: Union[None, Stream, Device] = None) -> array"),
R"pbdoc(
Computes the solution of a triangular system of linear equations ``AX = B``.
Args:
a (array): Input array.
b (array): Input array.
upper (bool, optional): Whether the array is upper or lower
triangular. Default: ``False``.
stream (Stream, optional): Stream or device. Defaults to ``None``
in which case the default stream of the default device is used.
Returns:
array: The unique solution to the system ``AX = B``.
)pbdoc");
}