Files
mlx/mlx/backend/cuda/copy/copy_general_input.cu
Awni Hannun df58b4133a
Some checks failed
Nightly Build / build_linux_release (3.10) (push) Has been cancelled
Nightly Build / build_linux_release (3.14) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.10) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.11) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.12) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.13) (push) Has been cancelled
Nightly Build / build_linux_with_tests (3.14) (push) Has been cancelled
Nightly Build / build_mac_release (3.10) (push) Has been cancelled
Nightly Build / build_mac_release (3.13) (push) Has been cancelled
Nightly Build / build_cuda_with_tests (push) Has been cancelled
Nightly Build / build_cuda_release (push) Has been cancelled
Nightly Build / Linux Fedora CPP Build (aarch64) (push) Has been cancelled
Nightly Build / Linux Fedora CPP Build (x86_64) (push) Has been cancelled
[CUDA] Reduce use of managed memory (#2725)
* Use async cuda malloc managed with cuda 13

* add pool threshold

* refactor for regular cuda malloc

* load eval gpu for cuda

* remove use of cuda pool, use cuda free async

* fix

* fix

* fix

* fix

* fix + comment
2025-11-05 16:05:23 -08:00

151 lines
4.9 KiB
Plaintext

// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/copy/copy.cuh"
#include <cooperative_groups.h>
namespace mlx::core {
namespace cu {
namespace cg = cooperative_groups;
template <typename In, typename Out, typename IdxT, int NDIM, int N_READS>
__global__ void copy_g_nd(
const In* in,
Out* out,
IdxT size_rest,
const __grid_constant__ cuda::std::array<int32_t, NDIM> shape,
const __grid_constant__ cuda::std::array<int64_t, NDIM> strides) {
auto block = cg::this_thread_block();
auto grid = cg::this_grid();
IdxT index_rest =
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
if (index_rest >= size_rest) {
return;
}
auto shape_x = shape[NDIM - 1];
auto stride_x = strides[NDIM - 1];
IdxT index_x =
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
auto idx =
elem_to_loc_nd<NDIM>(index_rest * shape_x, shape.data(), strides.data());
auto in_vec =
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
}
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
}
template <typename In, typename Out, typename IdxT, int N_READS>
__global__ void copy_g(
const In* in,
Out* out,
IdxT size_rest,
const __grid_constant__ Shape shape,
const __grid_constant__ Strides strides,
int ndim) {
auto block = cg::this_thread_block();
auto grid = cg::this_grid();
IdxT index_rest =
grid.block_index().y * block.dim_threads().y + block.thread_index().y;
if (index_rest >= size_rest) {
return;
}
auto shape_x = shape[ndim - 1];
auto stride_x = strides[ndim - 1];
IdxT index_x =
grid.block_index().x * block.dim_threads().x + block.thread_index().x;
auto idx =
elem_to_loc(index_rest * shape_x, shape.data(), strides.data(), ndim);
auto in_vec =
load_vector<N_READS>(in + idx, index_x, shape_x, stride_x, In(0));
AlignedVector<Out, N_READS> out_vec;
#pragma unroll
for (int i = 0; i < N_READS; ++i) {
out_vec[i] = CastOp<In, Out>{}(in_vec[i]);
}
store_vector(out + shape_x * index_rest, index_x, out_vec, shape_x);
}
} // namespace cu
void copy_general_input(
cu::CommandEncoder& encoder,
CopyType ctype,
const array& in,
array& out,
int64_t offset_in,
int64_t offset_out,
const Shape& shape,
const Strides& strides_in) {
dispatch_all_types(in.dtype(), [&](auto in_type_tag) {
dispatch_all_types(out.dtype(), [&](auto out_type_tag) {
dispatch_bool(
in.data_size() > INT32_MAX || out.data_size() > INT32_MAX,
[&](auto large) {
using InType = cuda_type_t<MLX_GET_TYPE(in_type_tag)>;
using OutType = cuda_type_t<MLX_GET_TYPE(out_type_tag)>;
using IdxT = std::conditional_t<large(), int64_t, int32_t>;
const InType* in_ptr = gpu_ptr<InType>(in) + offset_in;
OutType* out_ptr = gpu_ptr<OutType>(out) + offset_out;
int ndim = shape.size();
int work_per_thread = 1;
auto dim0 = ndim > 0 ? shape.back() : 1;
auto rest = out.size() / dim0;
if (dim0 >= 4) {
work_per_thread = 4;
}
dim0 = (dim0 + work_per_thread - 1) / work_per_thread;
auto block_dims = get_block_dims(dim0, rest, 1);
uint32_t num_blocks_x = cuda::ceil_div(dim0, block_dims.x);
uint32_t num_blocks_y = cuda::ceil_div(rest, block_dims.y);
if (ndim <= 3) {
dispatch_1_2_3(ndim, [&](auto dims_constant) {
auto kernel =
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 1>;
if (work_per_thread == 4) {
kernel =
cu::copy_g_nd<InType, OutType, IdxT, dims_constant(), 4>;
}
encoder.add_kernel_node(
kernel,
{num_blocks_x, num_blocks_y},
block_dims,
0,
in_ptr,
out_ptr,
rest,
const_param<dims_constant()>(shape),
const_param<dims_constant()>(strides_in));
});
} else { // ndim >= 4
auto kernel = cu::copy_g<InType, OutType, IdxT, 1>;
if (work_per_thread == 4) {
kernel = cu::copy_g<InType, OutType, IdxT, 4>;
}
encoder.add_kernel_node(
kernel,
{num_blocks_x, num_blocks_y},
block_dims,
0,
in_ptr,
out_ptr,
rest,
const_param(shape),
const_param(strides_in),
ndim);
}
});
});
});
}
} // namespace mlx::core