Files
mlx/mlx/backend/cuda/primitives.cu
2025-05-21 23:49:57 +00:00

155 lines
4.4 KiB
Plaintext

// Copyright © 2025 Apple Inc.
#include "mlx/backend/cuda/device.h"
#include "mlx/backend/cuda/kernel_utils.cuh"
#include "mlx/backend/cuda/kernels/arange.cuh"
#include "mlx/backend/cuda/kernels/fp16_math.cuh"
#include "mlx/backend/cuda/kernels/random.cuh"
#include "mlx/distributed/primitives.h"
#include "mlx/dtype_utils.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
#include <nvtx3/nvtx3.hpp>
#include <thrust/device_ptr.h>
#include <thrust/transform.h>
#include <cassert>
namespace mlx::core {
void Arange::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("Arange::eval_gpu");
assert(inputs.size() == 0);
out.set_data(allocator::malloc(out.nbytes()));
if (out.size() == 0) {
return;
}
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
encoder.set_output_array(out);
encoder.launch_kernel([&, this](cudaStream_t stream) {
MLX_SWITCH_INT_FLOAT_TYPES_CHECKED(out.dtype(), "Arange", CTYPE, {
using OutType = cuda_type_t<CTYPE>;
CTYPE step =
static_cast<CTYPE>(start_ + step_) - static_cast<CTYPE>(start_);
thrust::transform(
cu::thrust_policy(stream),
thrust::counting_iterator<uint32_t>(0),
thrust::counting_iterator<uint32_t>(out.data_size()),
thrust::device_pointer_cast(out.data<OutType>()),
cu::Arange<OutType>{
static_cast<OutType>(start_), static_cast<OutType>(step)});
});
});
}
void RandomBits::eval_gpu(const std::vector<array>& inputs, array& out) {
nvtx3::scoped_range r("RandomBits::eval_gpu");
assert(inputs.size() == 1);
// keys has shape (N1, ..., NK, 2)
// out has shape (N1, ..., NK, M1, M2, ...)
auto& keys = inputs[0];
size_t num_keys = keys.size() / 2;
size_t elems_per_key = out.size() / num_keys;
size_t bytes_per_key = out.itemsize() * elems_per_key;
out.set_data(allocator::malloc(out.nbytes()));
if (out.size() == 0) {
return;
}
size_t out_per_key = (bytes_per_key + 4 - 1) / 4;
size_t half_size = out_per_key / 2;
bool odd = out_per_key % 2;
auto& s = stream();
auto& encoder = cu::get_command_encoder(s);
encoder.set_input_array(keys);
encoder.set_output_array(out);
encoder.launch_kernel([&](cudaStream_t stream) {
dim3 grid_dim{
static_cast<uint32_t>(num_keys),
static_cast<uint32_t>(half_size + odd)};
dim3 block_dim = get_block_dims(grid_dim.x, grid_dim.y, 1);
dim3 num_blocks{
cuda::ceil_div(grid_dim.x, block_dim.x),
cuda::ceil_div(grid_dim.y, block_dim.y)};
if (keys.flags().row_contiguous) {
cu::rbitsc<<<num_blocks, block_dim, 0, stream>>>(
keys.data<uint32_t>(),
out.data<uint8_t>(),
grid_dim,
odd,
bytes_per_key);
} else {
cu::rbits<<<num_blocks, block_dim, 0, stream>>>(
keys.data<uint32_t>(),
out.data<uint8_t>(),
grid_dim,
odd,
bytes_per_key,
keys.ndim(),
const_param(keys.shape()),
const_param(keys.strides()));
}
});
}
#define NO_GPU_MULTI(func) \
void func::eval_gpu( \
const std::vector<array>& inputs, std::vector<array>& outputs) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
#define NO_GPU(func) \
void func::eval_gpu(const std::vector<array>& inputs, array& out) { \
throw std::runtime_error(#func " has no CUDA implementation."); \
}
NO_GPU(ArgPartition)
NO_GPU(BlockMaskedMM)
NO_GPU_MULTI(Compiled)
NO_GPU(Convolution)
NO_GPU_MULTI(DivMod)
NO_GPU(DynamicSlice)
NO_GPU(DynamicSliceUpdate)
NO_GPU(FFT)
NO_GPU(GatherMM)
NO_GPU(GatherQMM)
NO_GPU(Hadamard)
NO_GPU(Load)
NO_GPU(LogSumExp)
NO_GPU_MULTI(LUF)
NO_GPU(Partition)
NO_GPU_MULTI(QRF)
NO_GPU(QuantizedMatmul)
NO_GPU(Scan)
NO_GPU(Select)
NO_GPU(SliceUpdate)
NO_GPU(Softmax)
NO_GPU_MULTI(SVD)
NO_GPU(Inverse)
NO_GPU(Cholesky)
NO_GPU_MULTI(Eig)
NO_GPU_MULTI(Eigh)
namespace fast {
NO_GPU_MULTI(RMSNorm)
NO_GPU_MULTI(RMSNormVJP)
NO_GPU_MULTI(RoPE)
NO_GPU(ScaledDotProductAttention)
NO_GPU_MULTI(AffineQuantize)
NO_GPU_MULTI(CustomKernel)
} // namespace fast
namespace distributed {
NO_GPU_MULTI(AllReduce)
NO_GPU_MULTI(AllGather)
NO_GPU_MULTI(Send)
NO_GPU_MULTI(Recv)
} // namespace distributed
} // namespace mlx::core