mlx/mlx/io/gguf.cpp
Awni Hannun e03f0372b1
More shape type (#1705)
* more shape type

* fix
2024-12-19 08:08:20 -08:00

464 lines
15 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <cstdint>
#include <cstring>
#include <fstream>
#include <numeric>
#include "mlx/io/gguf.h"
#include "mlx/ops.h"
namespace mlx::core {
// https://github.com/antirez/gguf-tools/blob/af7d88d808a7608a33723fba067036202910acb3/gguflib.h#L102-L108
constexpr int gguf_array_header_size = 12;
std::optional<uint32_t> dtype_to_gguf_tensor_type(const Dtype& dtype) {
switch (dtype) {
case float32:
return GGUF_TYPE_F32;
case float16:
return GGUF_TYPE_F16;
case int8:
return GGUF_TYPE_I8;
case int16:
return GGUF_TYPE_I16;
case int32:
return GGUF_TYPE_I32;
default:
return {};
}
}
std::optional<Dtype> gguf_type_to_dtype(const uint32_t& gguf_type) {
switch (gguf_type) {
case GGUF_TYPE_F32:
return float32;
case GGUF_TYPE_F16:
return float16;
case GGUF_TYPE_I8:
return int8;
case GGUF_TYPE_I16:
return int16;
case GGUF_TYPE_I32:
return int32;
default:
return {};
}
}
Shape get_shape(const gguf_tensor& tensor) {
Shape shape;
// The dimension order in GGML is the reverse of the order used in MLX.
for (int i = tensor.ndim - 1; i >= 0; i--) {
shape.push_back(tensor.dim[i]);
}
return shape;
}
std::tuple<allocator::Buffer, Dtype> extract_tensor_data(gguf_tensor* tensor) {
std::optional<Dtype> equivalent_dtype = gguf_type_to_dtype(tensor->type);
// If there's an equivalent type, we can simply copy.
if (equivalent_dtype.has_value()) {
allocator::Buffer buffer = allocator::malloc(tensor->bsize);
memcpy(
buffer.raw_ptr(),
tensor->weights_data,
tensor->num_weights * equivalent_dtype.value().size());
return {buffer, equivalent_dtype.value()};
}
// Otherwise, we convert to float16.
// TODO: Add other dequantization options.
int16_t* data = gguf_tensor_to_f16(tensor);
if (data == NULL) {
throw std::runtime_error("[load_gguf] gguf_tensor_to_f16 failed");
}
const size_t new_size = tensor->num_weights * sizeof(int16_t);
allocator::Buffer buffer = allocator::malloc(new_size);
memcpy(buffer.raw_ptr(), data, new_size);
free(data);
return {buffer, float16};
}
void set_mx_value_from_gguf(
gguf_ctx* ctx,
uint32_t type,
gguf_value* val,
GGUFMetaData& value) {
switch (type) {
case GGUF_VALUE_TYPE_UINT8:
value = array(val->uint8, uint8);
break;
case GGUF_VALUE_TYPE_INT8:
value = array(val->int8, int8);
break;
case GGUF_VALUE_TYPE_UINT16:
value = array(val->uint16, uint16);
break;
case GGUF_VALUE_TYPE_INT16:
value = array(val->int16, int16);
break;
case GGUF_VALUE_TYPE_UINT32:
value = array(val->uint32, uint32);
break;
case GGUF_VALUE_TYPE_INT32:
value = array(val->int32, int32);
break;
case GGUF_VALUE_TYPE_UINT64:
value = array(val->uint64, uint64);
break;
case GGUF_VALUE_TYPE_INT64:
value = array(val->int64, int64);
break;
case GGUF_VALUE_TYPE_FLOAT32:
value = array(val->float32, float32);
break;
case GGUF_VALUE_TYPE_BOOL:
value = array(val->boolval, bool_);
break;
case GGUF_VALUE_TYPE_STRING:
value =
std::string(val->string.string, static_cast<int>(val->string.len));
break;
case GGUF_VALUE_TYPE_FLOAT64:
value = array(val->float64, float32);
break;
case GGUF_VALUE_TYPE_ARRAY: {
ctx->off += gguf_array_header_size; // Skip header
char* data = reinterpret_cast<char*>(val) + gguf_array_header_size;
auto size = static_cast<int>(val->array.len);
if (val->array.type == GGUF_VALUE_TYPE_ARRAY) {
throw std::invalid_argument(
"[load_gguf] Only supports loading 1-layer of nested arrays.");
}
switch (val->array.type) {
case GGUF_VALUE_TYPE_UINT8:
value = array(reinterpret_cast<uint8_t*>(data), {size}, uint8);
break;
case GGUF_VALUE_TYPE_INT8:
value = array(reinterpret_cast<int8_t*>(data), {size}, int8);
break;
case GGUF_VALUE_TYPE_UINT16:
value = array(reinterpret_cast<uint16_t*>(data), {size}, uint16);
break;
case GGUF_VALUE_TYPE_INT16:
value = array(reinterpret_cast<int16_t*>(data), {size}, int16);
break;
case GGUF_VALUE_TYPE_UINT32:
value = array(reinterpret_cast<uint32_t*>(data), {size}, uint32);
break;
case GGUF_VALUE_TYPE_INT32:
value = array(reinterpret_cast<int32_t*>(data), {size}, int32);
break;
case GGUF_VALUE_TYPE_UINT64:
value = array(reinterpret_cast<uint64_t*>(data), {size}, uint64);
break;
case GGUF_VALUE_TYPE_INT64:
value = array(reinterpret_cast<uint64_t*>(data), {size}, int64);
break;
case GGUF_VALUE_TYPE_FLOAT32:
value = array(reinterpret_cast<float*>(data), {size}, float32);
break;
case GGUF_VALUE_TYPE_BOOL:
value = array(reinterpret_cast<bool*>(data), {size}, bool_);
break;
case GGUF_VALUE_TYPE_STRING: {
std::vector<std::string> strs(size);
for (auto& str : strs) {
auto str_val = reinterpret_cast<gguf_string*>(data);
data += (str_val->len + sizeof(gguf_string));
str = std::string(str_val->string, static_cast<int>(str_val->len));
ctx->off += (str_val->len + sizeof(gguf_string));
}
value = std::move(strs);
break;
}
case GGUF_VALUE_TYPE_FLOAT64:
value = array(reinterpret_cast<double*>(data), {size}, float32);
break;
default:
throw std::runtime_error(
"[load_gguf] Multiple levels of nested arrays are not supported.");
}
break;
}
default:
throw std::runtime_error("[load_gguf] Received unexpected type.");
break;
}
if (type == GGUF_VALUE_TYPE_STRING) {
ctx->off += (sizeof(gguf_string) + std::get<std::string>(value).size());
} else if (auto pv = std::get_if<array>(&value); pv) {
ctx->off += pv->nbytes();
}
}
std::unordered_map<std::string, GGUFMetaData> load_metadata(gguf_ctx* ctx) {
std::unordered_map<std::string, GGUFMetaData> metadata;
gguf_key key;
while (gguf_get_key(ctx, &key)) {
std::string key_name = std::string(key.name, key.namelen);
auto& val = metadata.insert({key_name, GGUFMetaData{}}).first->second;
set_mx_value_from_gguf(ctx, key.type, key.val, val);
}
return metadata;
}
std::unordered_map<std::string, array> load_arrays(gguf_ctx* ctx) {
std::unordered_map<std::string, array> array_map;
gguf_tensor tensor;
auto check_insert = [](const auto& inserted) {
if (!inserted.second) {
std::ostringstream msg;
msg << "[load_gguf] Duplicate parameter name " << inserted.first->second
<< " this can happend when loading quantized tensors.";
throw std::runtime_error(msg.str());
}
};
while (gguf_get_tensor(ctx, &tensor)) {
if (tensor.type == GGUF_TYPE_Q4_0 || tensor.type == GGUF_TYPE_Q4_1 ||
tensor.type == GGUF_TYPE_Q8_0) {
gguf_load_quantized(array_map, tensor);
} else {
std::string name(tensor.name, tensor.namelen);
const auto& [data, dtype] = extract_tensor_data(&tensor);
array loaded_array = array(data, get_shape(tensor), dtype);
check_insert(array_map.insert({name, loaded_array}));
}
}
return array_map;
}
GGUFLoad load_gguf(const std::string& file, StreamOrDevice s) {
bool exists;
{
std::ifstream f(file.c_str());
exists = f.good();
}
if (!exists) {
throw std::invalid_argument("[load_gguf] Failed to open " + file);
}
std::unique_ptr<gguf_ctx, decltype(&gguf_close)> ctx(
gguf_open(file.data()), gguf_close);
if (!ctx) {
throw std::runtime_error("[load_gguf] gguf_init failed");
}
auto metadata = load_metadata(ctx.get());
auto arrays = load_arrays(ctx.get());
return {arrays, metadata};
}
void append_kv_array(
gguf_ctx* ctx,
const std::string& key,
array& val,
uint32_t gguf_type) {
if (val.ndim() == 1) {
size_t gguf_size = val.nbytes() + gguf_array_header_size;
std::vector<char> val_vec(gguf_size);
gguf_value* gguf_val = reinterpret_cast<gguf_value*>(val_vec.data());
gguf_val->array.type = gguf_type;
gguf_val->array.len = val.size();
memcpy(
val_vec.data() + gguf_array_header_size,
val.data<char>(),
val.nbytes());
gguf_append_kv(
ctx,
key.c_str(),
key.length(),
GGUF_VALUE_TYPE_ARRAY,
reinterpret_cast<void*>(val_vec.data()),
gguf_size);
} else {
gguf_append_kv(
ctx,
key.c_str(),
key.length(),
gguf_type,
reinterpret_cast<void*>(val.data<char>()),
val.nbytes());
}
}
void save_gguf(
std::string file,
std::unordered_map<std::string, array> array_map,
std::unordered_map<std::string, GGUFMetaData> metadata /* = {} */) {
// Add .gguf to file name if it is not there
if (file.length() < 5 || file.substr(file.length() - 5, 5) != ".gguf") {
file += ".gguf";
}
std::unique_ptr<gguf_ctx, decltype(&gguf_close)> ctx(
gguf_create(file.c_str(), GGUF_OVERWRITE), gguf_close);
if (!ctx) {
throw std::runtime_error("[save_gguf] gguf_create failed");
}
auto string_to_gguf = [](char* dst, const std::string& src) {
gguf_string* val = reinterpret_cast<gguf_string*>(dst);
val->len = src.length();
memcpy(val->string, src.c_str(), src.length());
};
// Save any meta data
for (auto& [key, value] : metadata) {
if (auto pv = std::get_if<std::string>(&value); pv) {
const std::string& str = *pv;
size_t size = sizeof(gguf_string) + str.length();
std::vector<char> val_vec(size);
string_to_gguf(val_vec.data(), str);
gguf_append_kv(
ctx.get(),
key.c_str(),
key.length(),
GGUF_VALUE_TYPE_STRING,
static_cast<void*>(val_vec.data()),
size);
} else if (auto pv = std::get_if<std::vector<std::string>>(&value); pv) {
const auto& str_vec = *pv;
auto mem_size = std::accumulate(
str_vec.begin(), str_vec.end(), 0, [](size_t accum, const auto& s) {
return accum + s.size();
});
mem_size += str_vec.size() * sizeof(gguf_string) + gguf_array_header_size;
std::vector<char> val_vec(mem_size);
gguf_value* val = reinterpret_cast<gguf_value*>(val_vec.data());
val->array.type = GGUF_VALUE_TYPE_STRING;
val->array.len = str_vec.size();
auto str_ptr = val_vec.data() + gguf_array_header_size;
for (auto& str : str_vec) {
string_to_gguf(str_ptr, str);
str_ptr += str.length() + sizeof(gguf_string);
}
gguf_append_kv(
ctx.get(),
key.c_str(),
key.length(),
GGUF_VALUE_TYPE_ARRAY,
static_cast<void*>(val),
mem_size);
} else if (auto pv = std::get_if<array>(&value); pv) {
array v = *pv;
if (v.ndim() > 1) {
throw std::runtime_error(
"[save_gguf] Cannot save arrays with more than one dimension.");
}
if (v.size() == 0) {
throw std::runtime_error("[save_gguf] Cannot save empty arrays.");
}
eval(v);
if (!v.flags().row_contiguous) {
v = reshape(flatten(v), v.shape());
}
if (!v.flags().row_contiguous) {
throw std::runtime_error(
"[save_gguf] Cannot save non contiguous arrays.");
}
switch (v.dtype()) {
case float32:
append_kv_array(ctx.get(), key, v, GGUF_VALUE_TYPE_FLOAT32);
break;
case int64:
append_kv_array(ctx.get(), key, v, GGUF_VALUE_TYPE_INT64);
break;
case int32:
append_kv_array(ctx.get(), key, v, GGUF_VALUE_TYPE_INT32);
break;
case int16:
append_kv_array(ctx.get(), key, v, GGUF_VALUE_TYPE_INT16);
break;
case int8:
append_kv_array(ctx.get(), key, v, GGUF_VALUE_TYPE_INT8);
break;
case uint64:
append_kv_array(ctx.get(), key, v, GGUF_VALUE_TYPE_UINT64);
break;
case uint32:
append_kv_array(ctx.get(), key, v, GGUF_VALUE_TYPE_UINT32);
break;
case uint16:
append_kv_array(ctx.get(), key, v, GGUF_VALUE_TYPE_UINT16);
break;
case uint8:
append_kv_array(ctx.get(), key, v, GGUF_VALUE_TYPE_UINT8);
break;
case bool_:
append_kv_array(ctx.get(), key, v, GGUF_VALUE_TYPE_BOOL);
break;
default:
std::ostringstream msg;
msg << "[save_gguf] array type " << v.dtype()
<< " not support for metadata.";
throw std::invalid_argument(msg.str());
}
} else {
throw std::runtime_error(
"[save_gguf] Received unexpected type in metadata");
}
}
// Tensor offsets are relative to data section, so we start at offset 0.
uint64_t tensor_offset = 0;
// First, append the tensor info
for (auto& [key, arr] : array_map) {
arr.eval();
// Try to make it row contiguous
if (!arr.flags().row_contiguous) {
arr = reshape(flatten(arr), arr.shape());
arr.eval();
}
// Has to be row-major now but, check one more time in case
// any of the above change in the future
if (!arr.flags().row_contiguous) {
throw std::invalid_argument(
"[save_gguf] can only serialize row-major arrays");
}
tensor_offset += gguf_get_alignment_padding(ctx->alignment, tensor_offset);
const std::optional<uint32_t> gguf_type =
dtype_to_gguf_tensor_type(arr.dtype());
if (!gguf_type.has_value()) {
std::ostringstream msg;
msg << "[save_gguf] dtype " << arr.dtype() << " is not supported";
throw std::runtime_error(msg.str());
}
const char* tensorname = key.c_str();
const uint64_t namelen = key.length();
const uint32_t num_dim = arr.ndim();
uint64_t dim[num_dim];
for (int i = 0; i < num_dim; i++) {
dim[i] = arr.shape()[num_dim - 1 - i];
}
if (!gguf_append_tensor_info(
ctx.get(),
tensorname,
namelen,
num_dim,
dim,
gguf_type.value(),
tensor_offset)) {
throw std::runtime_error("[save_gguf] gguf_append_tensor_info failed");
}
tensor_offset += arr.nbytes();
}
// Then, append the tensor weights
for (const auto& [key, arr] : array_map) {
if (!gguf_append_tensor_data(
ctx.get(), (void*)arr.data<void>(), arr.nbytes())) {
throw std::runtime_error("[save_gguf] gguf_append_tensor_data failed");
}
}
}
} // namespace mlx::core