mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-25 01:41:17 +08:00
3567 lines
105 KiB
C++
3567 lines
105 KiB
C++
// Copyright © 2023-2024 Apple Inc.
|
|
|
|
#include <algorithm>
|
|
#include <climits>
|
|
#include <cmath>
|
|
#include <numeric>
|
|
#include <set>
|
|
#include <sstream>
|
|
|
|
#include "mlx/ops.h"
|
|
#include "mlx/primitives.h"
|
|
#include "mlx/transforms.h"
|
|
#include "mlx/utils.h"
|
|
|
|
namespace mlx::core {
|
|
|
|
namespace {
|
|
|
|
std::pair<std::vector<int>, std::vector<int>> compute_reduce_shape(
|
|
const std::vector<int>& axes,
|
|
const std::vector<int>& shape) {
|
|
std::set<int> axes_set;
|
|
auto ndim = shape.size();
|
|
for (auto ax : axes) {
|
|
int ax_ = (ax < 0) ? ax + ndim : ax;
|
|
if (ax_ < 0 || ax_ >= ndim) {
|
|
std::ostringstream msg;
|
|
msg << "Invalid axis " << ax << " for array with " << ndim
|
|
<< " dimensions.";
|
|
throw std::out_of_range(msg.str());
|
|
}
|
|
axes_set.insert(ax_);
|
|
}
|
|
if (axes_set.size() != axes.size()) {
|
|
throw std::invalid_argument("Duplicate axes detected in reduction.");
|
|
}
|
|
std::vector<int> out_shape;
|
|
for (int i = 0; i < ndim; ++i) {
|
|
if (axes_set.count(i) == 0) {
|
|
out_shape.push_back(shape[i]);
|
|
} else {
|
|
out_shape.push_back(1);
|
|
}
|
|
}
|
|
std::vector<int> sorted_axes(axes_set.begin(), axes_set.end());
|
|
return {out_shape, sorted_axes};
|
|
}
|
|
|
|
int compute_number_of_elements(const array& a, const std::vector<int>& axes) {
|
|
int nelements = 1;
|
|
for (auto axis : axes) {
|
|
nelements *= a.shape(axis);
|
|
}
|
|
return nelements;
|
|
}
|
|
|
|
Dtype at_least_float(const Dtype& d) {
|
|
return is_floating_point(d) ? d : promote_types(d, float32);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
array arange(
|
|
double start,
|
|
double stop,
|
|
double step,
|
|
Dtype dtype,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (dtype == bool_) {
|
|
std::ostringstream msg;
|
|
msg << bool_ << " not supported for arange.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (std::isnan(start) || std::isnan(step) || std::isnan(stop)) {
|
|
throw std::invalid_argument("[arange] Cannot compute length.");
|
|
}
|
|
|
|
if (std::isinf(start) || std::isinf(stop)) {
|
|
throw std::invalid_argument("[arange] Cannot compute length.");
|
|
}
|
|
|
|
// Check if start and stop specify a valid range because if not, we have to
|
|
// return an empty array
|
|
if (std::isinf(step) &&
|
|
(step > 0 && start < stop || step < 0 && start > stop)) {
|
|
return array({start}, dtype);
|
|
}
|
|
|
|
double real_size = std::ceil((stop - start) / step);
|
|
|
|
if (real_size > INT_MAX) {
|
|
throw std::invalid_argument("[arange] Maximum size exceeded.");
|
|
}
|
|
|
|
int size = std::max(static_cast<int>(real_size), 0);
|
|
return array(
|
|
{size},
|
|
dtype,
|
|
std::make_unique<Arange>(to_stream(s), start, stop, step),
|
|
{});
|
|
}
|
|
array arange(
|
|
double start,
|
|
double stop,
|
|
double step,
|
|
StreamOrDevice s /* = {} */) {
|
|
return arange(start, stop, step, float32, to_stream(s));
|
|
}
|
|
array arange(
|
|
double start,
|
|
double stop,
|
|
Dtype dtype,
|
|
StreamOrDevice s /* = {} */) {
|
|
return arange(start, stop, 1.0, dtype, to_stream(s));
|
|
}
|
|
array arange(double start, double stop, StreamOrDevice s /* = {} */) {
|
|
return arange(start, stop, 1.0, float32, to_stream(s));
|
|
}
|
|
array arange(double stop, Dtype dtype, StreamOrDevice s /* = {} */) {
|
|
return arange(0.0, stop, 1.0, dtype, to_stream(s));
|
|
}
|
|
array arange(double stop, StreamOrDevice s /* = {} */) {
|
|
return arange(0.0, stop, 1.0, float32, to_stream(s));
|
|
}
|
|
array arange(int start, int stop, int step, StreamOrDevice s /* = {} */) {
|
|
return arange(
|
|
static_cast<double>(start),
|
|
static_cast<double>(stop),
|
|
static_cast<double>(step),
|
|
int32,
|
|
to_stream(s));
|
|
}
|
|
array arange(int start, int stop, StreamOrDevice s /* = {} */) {
|
|
return arange(
|
|
static_cast<double>(start),
|
|
static_cast<double>(stop),
|
|
1.0,
|
|
int32,
|
|
to_stream(s));
|
|
}
|
|
array arange(int stop, StreamOrDevice s /* = {} */) {
|
|
return arange(0.0, static_cast<double>(stop), 1.0, int32, to_stream(s));
|
|
}
|
|
|
|
array linspace(
|
|
double start,
|
|
double stop,
|
|
int num /* = 50 */,
|
|
Dtype dtype /* = float32 */,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (num < 0) {
|
|
std::ostringstream msg;
|
|
msg << "[linspace] number of samples, " << num << ", must be non-negative.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (num == 1) {
|
|
return astype(array({start}), dtype, to_stream(s));
|
|
}
|
|
array sequence = arange(0, num, float32, to_stream(s));
|
|
float step = (stop - start) / (num - 1);
|
|
return astype(
|
|
add(multiply(sequence, array(step), to_stream(s)),
|
|
array(start),
|
|
to_stream(s)),
|
|
dtype,
|
|
to_stream(s));
|
|
}
|
|
|
|
array astype(const array& a, Dtype dtype, StreamOrDevice s /* = {} */) {
|
|
if (dtype == a.dtype()) {
|
|
return a;
|
|
}
|
|
return array(
|
|
a.shape(), dtype, std::make_unique<AsType>(to_stream(s), dtype), {a});
|
|
}
|
|
|
|
array as_strided(
|
|
const array& a,
|
|
std::vector<int> shape,
|
|
std::vector<size_t> strides,
|
|
size_t offset,
|
|
StreamOrDevice s /* = {} */) {
|
|
// Force the input array to be contiguous
|
|
auto x = reshape(a, {-1}, s);
|
|
return array(
|
|
shape,
|
|
a.dtype(),
|
|
std::make_unique<AsStrided>(to_stream(s), shape, strides, offset),
|
|
{x});
|
|
}
|
|
|
|
array copy(const array& a, StreamOrDevice s /* = {} */) {
|
|
return array(a.shape(), a.dtype(), std::make_unique<Copy>(to_stream(s)), {a});
|
|
}
|
|
|
|
array full(
|
|
const std::vector<int>& shape,
|
|
const array& vals,
|
|
Dtype dtype,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (std::any_of(shape.begin(), shape.end(), [](auto i) { return i < 0; })) {
|
|
throw std::invalid_argument("[full] Negative dimensions not allowed.");
|
|
}
|
|
auto in = broadcast_to(astype(vals, dtype, s), shape, s);
|
|
return array(shape, dtype, std::make_unique<Full>(to_stream(s)), {in});
|
|
}
|
|
|
|
array full(
|
|
const std::vector<int>& shape,
|
|
const array& vals,
|
|
StreamOrDevice s /* = {} */) {
|
|
return full(shape, vals, vals.dtype(), to_stream(s));
|
|
}
|
|
|
|
array zeros(
|
|
const std::vector<int>& shape,
|
|
Dtype dtype,
|
|
StreamOrDevice s /* = {} */) {
|
|
return full(shape, array(0, dtype), to_stream(s));
|
|
}
|
|
|
|
array zeros_like(const array& a, StreamOrDevice s /* = {} */) {
|
|
return zeros(a.shape(), a.dtype(), to_stream(s));
|
|
}
|
|
|
|
array ones(
|
|
const std::vector<int>& shape,
|
|
Dtype dtype,
|
|
StreamOrDevice s /* = {} */) {
|
|
return full(shape, array(1, dtype), to_stream(s));
|
|
}
|
|
|
|
array ones_like(const array& a, StreamOrDevice s /* = {} */) {
|
|
return ones(a.shape(), a.dtype(), to_stream(s));
|
|
}
|
|
|
|
array eye(int n, int m, int k, Dtype dtype, StreamOrDevice s /* = {} */) {
|
|
if (n <= 0 || m <= 0) {
|
|
throw std::invalid_argument("[eye] N and M must be positive integers.");
|
|
}
|
|
array result = zeros({n, m}, dtype, s);
|
|
if (k >= m || -k >= n) {
|
|
return result;
|
|
}
|
|
|
|
int diagonal_length = k >= 0 ? std::min(n, m - k) : std::min(n + k, m);
|
|
|
|
std::vector<array> indices;
|
|
auto s1 = std::max(0, -k);
|
|
auto s2 = std::max(0, k);
|
|
indices.push_back(arange(s1, diagonal_length + s1, int32, s));
|
|
indices.push_back(arange(s2, diagonal_length + s2, int32, s));
|
|
array ones_array = ones({diagonal_length, 1, 1}, dtype, s);
|
|
return scatter(result, indices, ones_array, {0, 1}, s);
|
|
}
|
|
|
|
array identity(int n, Dtype dtype, StreamOrDevice s /* = {} */) {
|
|
return eye(n, n, 0, dtype, s);
|
|
}
|
|
|
|
array tri(int n, int m, int k, Dtype type, StreamOrDevice s /* = {} */) {
|
|
auto l = expand_dims(arange(n, s), 1, s);
|
|
auto r = expand_dims(arange(-k, m - k, s), 0, s);
|
|
return astype(greater_equal(l, r, s), type, s);
|
|
}
|
|
|
|
array tril(array x, int k /* = 0 */, StreamOrDevice s /* = {} */) {
|
|
if (x.ndim() < 2) {
|
|
throw std::invalid_argument("[tril] array must be at least 2-D");
|
|
}
|
|
auto mask = tri(x.shape(-2), x.shape(-1), k, x.dtype(), s);
|
|
return where(mask, x, zeros_like(x, s), s);
|
|
}
|
|
|
|
array triu(array x, int k /* = 0 */, StreamOrDevice s /* = {} */) {
|
|
if (x.ndim() < 2) {
|
|
throw std::invalid_argument("[triu] array must be at least 2-D");
|
|
}
|
|
auto mask = tri(x.shape(-2), x.shape(-1), k - 1, x.dtype(), s);
|
|
return where(mask, zeros_like(x, s), x, s);
|
|
}
|
|
|
|
array reshape(
|
|
const array& a,
|
|
std::vector<int> shape,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (a.shape() == shape) {
|
|
return a;
|
|
}
|
|
|
|
size_t size = 1;
|
|
int infer_idx = -1;
|
|
for (int i = 0; i < shape.size(); ++i) {
|
|
if (shape[i] == -1) {
|
|
if (infer_idx >= 0) {
|
|
throw std::invalid_argument(
|
|
"[reshape] Reshape can only infer one dimension.");
|
|
}
|
|
infer_idx = i;
|
|
} else {
|
|
size *= shape[i];
|
|
}
|
|
}
|
|
|
|
// Infer the shape
|
|
if (size > 0) {
|
|
auto q_and_r = std::ldiv(a.size(), size);
|
|
if (infer_idx >= 0) {
|
|
shape[infer_idx] = q_and_r.quot;
|
|
size *= q_and_r.quot;
|
|
}
|
|
} else if (infer_idx >= 0) {
|
|
throw std::invalid_argument(
|
|
"[reshape] Cannot infer the shape of an empty array");
|
|
}
|
|
|
|
// Check the the reshaping is valid
|
|
if (a.size() != size) {
|
|
std::ostringstream msg;
|
|
msg << "[reshape] Cannot reshape array of size " << a.size()
|
|
<< " into shape " << shape << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
return array(
|
|
shape, a.dtype(), std::make_unique<Reshape>(to_stream(s), shape), {a});
|
|
}
|
|
|
|
array flatten(
|
|
const array& a,
|
|
int start_axis,
|
|
int end_axis /* = -1 */,
|
|
StreamOrDevice s /* = {} */) {
|
|
auto ndim = static_cast<int>(a.ndim());
|
|
auto start_ax = start_axis + (start_axis < 0 ? ndim : 0);
|
|
auto end_ax = end_axis + (end_axis < 0 ? ndim : 0);
|
|
start_ax = std::max(0, start_ax);
|
|
end_ax = std::min(ndim - 1, end_ax);
|
|
if (a.ndim() == 0) {
|
|
return reshape(a, {1}, s);
|
|
}
|
|
if (end_ax < start_ax) {
|
|
throw std::invalid_argument(
|
|
"[flatten] start_axis must be less than or equal to end_axis");
|
|
}
|
|
if (start_ax >= ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[flatten] Invalid start_axis " << start_axis << " for array with "
|
|
<< ndim << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (end_ax < 0) {
|
|
std::ostringstream msg;
|
|
msg << "[flatten] Invalid end_axis " << end_axis << " for array with "
|
|
<< ndim << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (start_ax == end_ax) {
|
|
return a;
|
|
}
|
|
std::vector<int> new_shape(a.shape().begin(), a.shape().begin() + start_ax);
|
|
new_shape.push_back(-1);
|
|
new_shape.insert(
|
|
new_shape.end(), a.shape().begin() + end_ax + 1, a.shape().end());
|
|
return reshape(a, new_shape, s);
|
|
}
|
|
|
|
array flatten(const array& a, StreamOrDevice s /* = {} */) {
|
|
return flatten(a, 0, a.ndim() - 1, s);
|
|
}
|
|
|
|
array squeeze(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
StreamOrDevice s /* = {} */) {
|
|
std::set<int> unique_axes;
|
|
for (auto ax : axes) {
|
|
ax = ax < 0 ? ax + a.ndim() : ax;
|
|
if (ax < 0 || ax >= a.ndim()) {
|
|
std::ostringstream msg;
|
|
msg << "[squeeze] Invalid axes " << ax << " for array with " << a.ndim()
|
|
<< " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (a.shape(ax) != 1) {
|
|
std::ostringstream msg;
|
|
msg << "[squeeze] Cannot squeeze axis " << ax << " with size "
|
|
<< a.shape(ax) << " which is not equal to 1.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
unique_axes.insert(ax);
|
|
}
|
|
|
|
if (unique_axes.size() != axes.size()) {
|
|
throw std::invalid_argument("[squeeze] Received duplicate axes.");
|
|
}
|
|
std::vector<int> sorted_axes(unique_axes.begin(), unique_axes.end());
|
|
std::vector<int> shape;
|
|
for (int i = 0, j = 0; i < a.ndim(); ++i) {
|
|
if (j < sorted_axes.size() && i == sorted_axes[j]) {
|
|
j++;
|
|
} else {
|
|
shape.push_back(a.shape(i));
|
|
}
|
|
}
|
|
return reshape(a, shape, s);
|
|
}
|
|
|
|
array squeeze(const array& a, StreamOrDevice s /* = {} */) {
|
|
std::vector<int> axes;
|
|
for (int i = 0; i < a.ndim(); ++i) {
|
|
if (a.shape(i) == 1) {
|
|
axes.push_back(i);
|
|
}
|
|
}
|
|
return squeeze(a, axes, s);
|
|
}
|
|
|
|
array expand_dims(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
StreamOrDevice s /* = {} */) {
|
|
{ // Check for repeats
|
|
std::set<int> unique_axes(axes.begin(), axes.end());
|
|
if (unique_axes.size() != axes.size()) {
|
|
throw std::invalid_argument("[expand_dims] Received duplicate axes.");
|
|
}
|
|
}
|
|
|
|
int out_ndim = axes.size() + a.ndim();
|
|
std::vector<int> canonical_axes = axes;
|
|
for (auto& ax : canonical_axes) {
|
|
ax = ax < 0 ? ax + out_ndim : ax;
|
|
if (ax < 0 || ax >= out_ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[squeeze] Invalid axes " << ax << " for output array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
|
|
// Check for repeats again
|
|
std::set<int> unique_axes(canonical_axes.begin(), canonical_axes.end());
|
|
if (unique_axes.size() != axes.size()) {
|
|
throw std::invalid_argument("[expand_dims] Received duplicate axes.");
|
|
}
|
|
|
|
std::vector<int> sorted_axes(unique_axes.begin(), unique_axes.end());
|
|
auto out_shape = a.shape();
|
|
for (int i = 0; i < sorted_axes.size(); ++i) {
|
|
out_shape.insert(out_shape.begin() + sorted_axes[i], 1);
|
|
}
|
|
return reshape(a, out_shape, s);
|
|
}
|
|
|
|
array slice(
|
|
const array& a,
|
|
std::vector<int> start,
|
|
std::vector<int> stop,
|
|
std::vector<int> strides,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (start.size() != a.ndim() || stop.size() != a.ndim() ||
|
|
strides.size() != a.ndim()) {
|
|
std::ostringstream msg;
|
|
msg << "[slice] Invalid number of indices or strides for "
|
|
<< "array with dimension " << a.ndim() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
std::vector<int> negatively_strided_axes;
|
|
std::vector<std::vector<int>> negatively_strided_slices;
|
|
std::vector<int> out_shape(a.ndim());
|
|
for (int i = 0; i < a.ndim(); ++i) {
|
|
// Following numpy docs
|
|
// Negative i and j are interpreted as n + i and n + j where n is
|
|
// the number of elements in the corresponding dimension. Negative
|
|
// k makes stepping go towards smaller indices
|
|
|
|
auto n = a.shape(i);
|
|
auto s = start[i];
|
|
s = s < 0 ? s + n : s;
|
|
auto e = stop[i];
|
|
e = e < 0 ? e + n : e;
|
|
|
|
// Note: We pass positive strides to the primitive and then flip
|
|
// the axes later as needed
|
|
if (strides[i] < 0) {
|
|
negatively_strided_axes.push_back(i);
|
|
auto st = std::min(s, n - 1);
|
|
auto ed = std::max(e, -1);
|
|
negatively_strided_slices.push_back({st, ed, strides[i]});
|
|
start[i] = 0;
|
|
stop[i] = n;
|
|
strides[i] = 1;
|
|
} else {
|
|
start[i] = s;
|
|
stop[i] = e < s ? s : e;
|
|
}
|
|
|
|
// Clamp to bounds
|
|
start[i] = std::max(0, std::min(start[i], n));
|
|
stop[i] = std::max(0, std::min(stop[i], n));
|
|
|
|
out_shape[i] = (stop[i] - start[i] + strides[i] - 1) / strides[i];
|
|
}
|
|
|
|
// If strides are negative, slice and then make a copy with axes flipped
|
|
if (negatively_strided_axes.size() > 0) {
|
|
// First, take the slice of the positively strided axes
|
|
auto out = array(
|
|
out_shape,
|
|
a.dtype(),
|
|
std::make_unique<Slice>(
|
|
to_stream(s),
|
|
std::move(start),
|
|
std::move(stop),
|
|
std::move(strides)),
|
|
{a});
|
|
|
|
std::vector<array> indices;
|
|
std::vector<int> slice_sizes = out.shape();
|
|
std::vector<int> t_axes(out.ndim(), -1);
|
|
std::vector<int> out_reshape(out.ndim(), -1);
|
|
|
|
int n_axes = negatively_strided_axes.size();
|
|
for (int i = 0; i < n_axes; i++) {
|
|
// Get axis and corresponding slice
|
|
auto ax = negatively_strided_axes[i];
|
|
auto sl = negatively_strided_slices[i];
|
|
|
|
// Get indices for the slice
|
|
auto ax_idx = arange(sl[0], sl[1], sl[2], s);
|
|
|
|
// Reshape indices for broadcast as needed
|
|
std::vector<int> ax_idx_shape(n_axes, 1);
|
|
ax_idx_shape[i] = ax_idx.size();
|
|
ax_idx = reshape(ax_idx, ax_idx_shape, s);
|
|
|
|
// Add indices to list
|
|
indices.push_back(ax_idx);
|
|
|
|
// Set slice size for axis
|
|
slice_sizes[ax] = 1;
|
|
|
|
// Gather moves the axis up, remainder needs to be squeezed
|
|
out_reshape[i] = indices[i].size();
|
|
|
|
// Gather moves the axis up, needs to be transposed
|
|
t_axes[ax] = i;
|
|
}
|
|
|
|
// Prepare out_reshape to squeeze gathered dims
|
|
// Prepare to transpose dims as needed
|
|
int j = n_axes;
|
|
for (int i = 0; j < out.ndim() && i < out.ndim(); i++) {
|
|
if (t_axes[i] < 0) {
|
|
t_axes[i] = j;
|
|
out_reshape[j] = out_shape[i];
|
|
j++;
|
|
}
|
|
}
|
|
|
|
// Gather
|
|
out = gather(out, indices, negatively_strided_axes, slice_sizes, s);
|
|
|
|
// Squeeze dims
|
|
out = reshape(out, out_reshape, s);
|
|
|
|
// Transpose dims
|
|
out = transpose(out, t_axes, s);
|
|
|
|
return out;
|
|
}
|
|
if (out_shape == a.shape()) {
|
|
return a;
|
|
}
|
|
return array(
|
|
out_shape,
|
|
a.dtype(),
|
|
std::make_unique<Slice>(
|
|
to_stream(s), std::move(start), std::move(stop), std::move(strides)),
|
|
{a});
|
|
}
|
|
|
|
array slice(
|
|
const array& a,
|
|
const std::vector<int>& start,
|
|
const std::vector<int>& stop,
|
|
StreamOrDevice s /* = {} */) {
|
|
return slice(a, start, stop, std::vector<int>(a.ndim(), 1), to_stream(s));
|
|
}
|
|
|
|
std::vector<array> split(
|
|
const array& a,
|
|
const std::vector<int>& indices,
|
|
int axis,
|
|
StreamOrDevice s /* = {} */) {
|
|
auto ax = axis < 0 ? axis + a.ndim() : axis;
|
|
if (ax < 0 || ax >= a.ndim()) {
|
|
std::ostringstream msg;
|
|
msg << "Invalid axis (" << axis << ") passed to split"
|
|
<< " for array with shape " << a.shape() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (indices.empty()) {
|
|
return {a};
|
|
}
|
|
|
|
if (indices.size() < 10 &&
|
|
std::is_sorted(indices.begin(), indices.end(), std::less<>{}) &&
|
|
indices[0] > 0 && indices.back() < a.shape(ax)) {
|
|
std::vector<Dtype> dtypes(indices.size() + 1, a.dtype());
|
|
std::vector<std::vector<int>> shapes(indices.size() + 1, a.shape());
|
|
shapes[0][ax] = indices[0];
|
|
for (int i = 1; i < indices.size(); i++) {
|
|
shapes[i][ax] = indices[i] - indices[i - 1];
|
|
}
|
|
shapes.back()[ax] = a.shape(ax) - indices.back();
|
|
|
|
return array::make_arrays(
|
|
shapes,
|
|
dtypes,
|
|
std::make_shared<Split>(to_stream(s), indices, ax),
|
|
{a});
|
|
}
|
|
|
|
std::vector<array> res;
|
|
auto out_shape = a.shape();
|
|
auto start_indices = std::vector<int>(a.ndim(), 0);
|
|
auto stop_indices = a.shape();
|
|
for (int i = 0; i < indices.size() + 1; ++i) {
|
|
stop_indices[ax] = i < indices.size() ? indices[i] : a.shape(ax);
|
|
res.push_back(slice(a, start_indices, stop_indices, to_stream(s)));
|
|
start_indices[ax] = stop_indices[ax];
|
|
}
|
|
return res;
|
|
}
|
|
|
|
std::vector<array> split(
|
|
const array& a,
|
|
const std::vector<int>& indices,
|
|
StreamOrDevice s /* = {} */) {
|
|
return split(a, indices, 0, s);
|
|
}
|
|
|
|
std::vector<array>
|
|
split(const array& a, int num_splits, int axis, StreamOrDevice s /* = {} */) {
|
|
auto ax = axis < 0 ? axis + a.ndim() : axis;
|
|
if (ax < 0 || ax >= a.ndim()) {
|
|
std::ostringstream msg;
|
|
msg << "Invalid axis " << axis << " passed to split"
|
|
<< " for array with shape " << a.shape() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
auto q_and_r = std::ldiv(a.shape(axis), num_splits);
|
|
if (q_and_r.rem) {
|
|
std::ostringstream msg;
|
|
msg << "Array split does not result in sub arrays with equal size:"
|
|
<< " attempting " << num_splits << " splits along axis " << axis
|
|
<< " for shape " << a.shape() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
auto split_size = q_and_r.quot;
|
|
std::vector<int> indices(num_splits - 1);
|
|
for (int i = 0; i < indices.size(); ++i) {
|
|
indices[i] = (i + 1) * split_size;
|
|
}
|
|
return split(a, indices, axis, s);
|
|
}
|
|
|
|
std::vector<array>
|
|
split(const array& a, int num_splits, StreamOrDevice s /* = {} */) {
|
|
return split(a, num_splits, 0, to_stream(s));
|
|
}
|
|
|
|
array clip(
|
|
const array& a,
|
|
const std::optional<array>& a_min,
|
|
const std::optional<array>& a_max,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (!a_min.has_value() && !a_max.has_value()) {
|
|
throw std::invalid_argument("At most one of a_min and a_max may be None");
|
|
}
|
|
array result = astype(a, a.dtype(), s);
|
|
if (a_min.has_value()) {
|
|
result = maximum(result, a_min.value(), s);
|
|
}
|
|
if (a_max.has_value()) {
|
|
result = minimum(result, a_max.value(), s);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
array concatenate(
|
|
const std::vector<array>& arrays,
|
|
int axis,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (arrays.size() == 0) {
|
|
throw std::invalid_argument(
|
|
"[concatenate] No arrays provided for concatenation");
|
|
}
|
|
|
|
// Normalize the given axis
|
|
auto ax = axis < 0 ? axis + arrays[0].ndim() : axis;
|
|
if (ax < 0 || ax >= arrays[0].ndim()) {
|
|
std::ostringstream msg;
|
|
msg << "[concatenate] Invalid axis (" << axis << ") passed to concatenate"
|
|
<< " for array with shape " << arrays[0].shape() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
auto throw_invalid_shapes = [&]() {
|
|
std::ostringstream msg;
|
|
msg << "[concatenate] All the input array dimensions must match exactly "
|
|
<< "except for the concatenation axis. However, the provided shapes are ";
|
|
for (auto& a : arrays) {
|
|
msg << a.shape() << ", ";
|
|
}
|
|
msg << "and the concatenation axis is " << axis << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
};
|
|
|
|
std::vector<int> shape = arrays[0].shape();
|
|
shape[ax] = 0;
|
|
// Make the output shape and validate that all arrays have the same shape
|
|
// except for the concatenation axis.
|
|
for (auto& a : arrays) {
|
|
if (a.ndim() != shape.size()) {
|
|
std::ostringstream msg;
|
|
msg << "[concatenate] All the input arrays must have the same number of "
|
|
<< "dimensions. However, got arrays with dimensions " << shape.size()
|
|
<< " and " << a.ndim() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
for (int i = 0; i < a.ndim(); i++) {
|
|
if (i == ax) {
|
|
continue;
|
|
}
|
|
if (a.shape(i) != shape[i]) {
|
|
throw_invalid_shapes();
|
|
}
|
|
}
|
|
shape[ax] += a.shape(ax);
|
|
}
|
|
|
|
// Promote all the arrays to the same type
|
|
auto dtype = result_type(arrays);
|
|
|
|
return array(
|
|
shape, dtype, std::make_unique<Concatenate>(to_stream(s), ax), arrays);
|
|
}
|
|
|
|
array concatenate(
|
|
const std::vector<array>& arrays,
|
|
StreamOrDevice s /* = {} */) {
|
|
std::vector<array> flat_inputs;
|
|
for (auto& a : arrays) {
|
|
flat_inputs.push_back(reshape(a, {-1}, s));
|
|
}
|
|
return concatenate(flat_inputs, 0, s);
|
|
}
|
|
|
|
/** Stack arrays along a new axis */
|
|
array stack(
|
|
const std::vector<array>& arrays,
|
|
int axis,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (arrays.empty()) {
|
|
throw std::invalid_argument("No arrays provided for stacking");
|
|
}
|
|
if (!is_same_shape(arrays)) {
|
|
throw std::invalid_argument("All arrays must have the same shape");
|
|
}
|
|
int normalized_axis = normalize_axis(axis, arrays[0].ndim() + 1);
|
|
std::vector<array> new_arrays;
|
|
new_arrays.reserve(arrays.size());
|
|
for (auto& a : arrays) {
|
|
new_arrays.emplace_back(expand_dims(a, normalized_axis, s));
|
|
}
|
|
return concatenate(new_arrays, axis, s);
|
|
}
|
|
|
|
array stack(const std::vector<array>& arrays, StreamOrDevice s /* = {} */) {
|
|
return stack(arrays, 0, s);
|
|
}
|
|
|
|
/** array repeat with axis */
|
|
array repeat(const array& arr, int repeats, int axis, StreamOrDevice s) {
|
|
axis = normalize_axis(axis, arr.ndim());
|
|
|
|
if (repeats < 0) {
|
|
throw std::invalid_argument(
|
|
"[repeat] Number of repeats cannot be negative");
|
|
}
|
|
|
|
if (repeats == 0) {
|
|
return array({}, arr.dtype());
|
|
}
|
|
|
|
if (repeats == 1) {
|
|
return arr;
|
|
}
|
|
|
|
// Broadcast to (S_1, S_2, ..., S_axis, repeats, S_axis+1, ...)
|
|
std::vector<int> shape(arr.shape());
|
|
shape.insert(shape.begin() + axis + 1, repeats);
|
|
array out = expand_dims(arr, axis + 1, s);
|
|
out = broadcast_to(out, shape, s);
|
|
|
|
// Reshape back into a contiguous array where S_axis is now S_axis * repeats
|
|
shape.erase(shape.begin() + axis + 1);
|
|
shape[axis] *= repeats;
|
|
out = reshape(out, shape, s);
|
|
|
|
return out;
|
|
}
|
|
|
|
array repeat(const array& arr, int repeats, StreamOrDevice s) {
|
|
return repeat(flatten(arr, s), repeats, 0, s);
|
|
}
|
|
|
|
array tile(
|
|
const array& arr,
|
|
std::vector<int> reps,
|
|
StreamOrDevice s /* = {} */) {
|
|
auto shape = arr.shape();
|
|
if (reps.size() < shape.size()) {
|
|
reps.insert(reps.begin(), shape.size() - reps.size(), 1);
|
|
}
|
|
if (reps.size() > shape.size()) {
|
|
shape.insert(shape.begin(), reps.size() - shape.size(), 1);
|
|
}
|
|
|
|
std::vector<int> expand_shape;
|
|
std::vector<int> broad_shape;
|
|
std::vector<int> final_shape;
|
|
for (int i = 0; i < shape.size(); i++) {
|
|
if (reps[i] != 1) {
|
|
expand_shape.push_back(1);
|
|
broad_shape.push_back(reps[i]);
|
|
}
|
|
expand_shape.push_back(shape[i]);
|
|
broad_shape.push_back(shape[i]);
|
|
final_shape.push_back(reps[i] * shape[i]);
|
|
}
|
|
|
|
auto x = reshape(arr, expand_shape, s);
|
|
x = broadcast_to(x, broad_shape, s);
|
|
return reshape(x, final_shape, s);
|
|
}
|
|
|
|
/** Pad an array with a constant value */
|
|
array pad(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
const std::vector<int>& low_pad_size,
|
|
const std::vector<int>& high_pad_size,
|
|
const array& pad_value /*= array(0)*/,
|
|
StreamOrDevice s /* = {}*/) {
|
|
if (axes.size() != low_pad_size.size() ||
|
|
axes.size() != high_pad_size.size()) {
|
|
std::ostringstream msg;
|
|
msg << "Invalid number of padding sizes passed to pad "
|
|
<< "with axes of size " << axes.size();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
std::vector<int> out_shape = a.shape();
|
|
|
|
for (int i = 0; i < axes.size(); i++) {
|
|
if (low_pad_size[i] < 0) {
|
|
std::ostringstream msg;
|
|
msg << "Invalid low padding size (" << low_pad_size[i]
|
|
<< ") passed to pad"
|
|
<< " for axis " << i << ". Padding sizes must be non-negative";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (high_pad_size[i] < 0) {
|
|
std::ostringstream msg;
|
|
msg << "Invalid high padding size (" << high_pad_size[i]
|
|
<< ") passed to pad"
|
|
<< " for axis " << i << ". Padding sizes must be non-negative";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
auto ax = axes[i] < 0 ? a.ndim() + axes[i] : axes[i];
|
|
out_shape[ax] += low_pad_size[i] + high_pad_size[i];
|
|
}
|
|
|
|
return array(
|
|
out_shape,
|
|
a.dtype(),
|
|
std::make_unique<Pad>(to_stream(s), axes, low_pad_size, high_pad_size),
|
|
{a, astype(pad_value, a.dtype(), s)});
|
|
}
|
|
|
|
/** Pad an array with a constant value along all axes */
|
|
array pad(
|
|
const array& a,
|
|
const std::vector<std::pair<int, int>>& pad_width,
|
|
const array& pad_value /*= array(0)*/,
|
|
StreamOrDevice s /*= {}*/) {
|
|
std::vector<int> axes(a.ndim(), 0);
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
|
|
std::vector<int> lows;
|
|
std::vector<int> highs;
|
|
|
|
for (auto& pads : pad_width) {
|
|
lows.push_back(pads.first);
|
|
highs.push_back(pads.second);
|
|
}
|
|
|
|
return pad(a, axes, lows, highs, pad_value, s);
|
|
}
|
|
|
|
array pad(
|
|
const array& a,
|
|
const std::pair<int, int>& pad_width,
|
|
const array& pad_value /*= array(0)*/,
|
|
StreamOrDevice s /*= {}*/) {
|
|
return pad(
|
|
a, std::vector<std::pair<int, int>>(a.ndim(), pad_width), pad_value, s);
|
|
}
|
|
|
|
array pad(
|
|
const array& a,
|
|
int pad_width,
|
|
const array& pad_value /*= array(0)*/,
|
|
StreamOrDevice s /*= {}*/) {
|
|
return pad(
|
|
a,
|
|
std::vector<std::pair<int, int>>(a.ndim(), {pad_width, pad_width}),
|
|
pad_value,
|
|
s);
|
|
}
|
|
|
|
array moveaxis(
|
|
const array& a,
|
|
int source,
|
|
int destination,
|
|
StreamOrDevice s /* = {} */) {
|
|
auto check_ax = [&a](int ax) {
|
|
auto ndim = static_cast<int>(a.ndim());
|
|
if (ax < -ndim || ax >= ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[moveaxis] Invalid axis " << ax << " for array with " << ndim
|
|
<< " dimensions.";
|
|
throw std::out_of_range(msg.str());
|
|
}
|
|
return ax < 0 ? ax + ndim : ax;
|
|
};
|
|
source = check_ax(source);
|
|
destination = check_ax(destination);
|
|
std::vector<int> reorder(a.ndim());
|
|
std::iota(reorder.begin(), reorder.end(), 0);
|
|
reorder.erase(reorder.begin() + source);
|
|
reorder.insert(reorder.begin() + destination, source);
|
|
return transpose(a, reorder, s);
|
|
}
|
|
|
|
array swapaxes(
|
|
const array& a,
|
|
int axis1,
|
|
int axis2,
|
|
StreamOrDevice s /* = {} */) {
|
|
auto check_ax = [&a](int ax) {
|
|
auto ndim = static_cast<int>(a.ndim());
|
|
if (ax < -ndim || ax >= ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[swapaxes] Invalid axis " << ax << " for array with " << ndim
|
|
<< " dimensions.";
|
|
throw std::out_of_range(msg.str());
|
|
}
|
|
return ax < 0 ? ax + ndim : ax;
|
|
};
|
|
axis1 = check_ax(axis1);
|
|
axis2 = check_ax(axis2);
|
|
std::vector<int> reorder(a.ndim());
|
|
std::iota(reorder.begin(), reorder.end(), 0);
|
|
std::swap(reorder[axis1], reorder[axis2]);
|
|
return transpose(a, reorder, s);
|
|
}
|
|
|
|
array transpose(
|
|
const array& a,
|
|
std::vector<int> axes,
|
|
StreamOrDevice s /* = {} */) {
|
|
for (auto& ax : axes) {
|
|
ax = ax < 0 ? ax + a.ndim() : ax;
|
|
}
|
|
std::set dims(axes.begin(), axes.end());
|
|
if (dims.size() != axes.size()) {
|
|
throw std::invalid_argument("Repeat axes not allowed in transpose.");
|
|
}
|
|
if (dims.size() != a.ndim() ||
|
|
a.ndim() > 0 &&
|
|
(*dims.begin() != 0 || *dims.rbegin() != (a.ndim() - 1))) {
|
|
throw std::invalid_argument("Transpose axes don't match array dimensions.");
|
|
}
|
|
std::vector<int> shape;
|
|
shape.reserve(axes.size());
|
|
for (auto ax : axes) {
|
|
shape.push_back(a.shape()[ax]);
|
|
}
|
|
return array(
|
|
shape,
|
|
a.dtype(),
|
|
std::make_unique<Transpose>(to_stream(s), std::move(axes)),
|
|
{a});
|
|
}
|
|
|
|
array transpose(const array& a, StreamOrDevice s /* = {} */) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.rbegin(), axes.rend(), 0);
|
|
return transpose(a, std::move(axes), to_stream(s));
|
|
}
|
|
|
|
array broadcast_to(
|
|
const array& a,
|
|
const std::vector<int>& shape,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (a.shape() == shape) {
|
|
return a;
|
|
}
|
|
|
|
// Make sure the shapes are broadcastable
|
|
auto bxshape = broadcast_shapes(a.shape(), shape);
|
|
if (bxshape != shape) {
|
|
std::ostringstream msg;
|
|
msg << "Cannot broadcast array of shape " << a.shape() << " into shape "
|
|
<< shape << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
return array(
|
|
shape, a.dtype(), std::make_unique<Broadcast>(to_stream(s), shape), {a});
|
|
}
|
|
|
|
std::vector<array> broadcast_arrays(
|
|
const std::vector<array>& inputs,
|
|
StreamOrDevice s /* = {} */) {
|
|
std::vector<int> shape{};
|
|
for (const auto& in : inputs) {
|
|
shape = broadcast_shapes(shape, in.shape());
|
|
}
|
|
std::vector<array> outputs;
|
|
for (const auto& in : inputs) {
|
|
outputs.push_back(broadcast_to(in, shape, s));
|
|
}
|
|
return outputs;
|
|
}
|
|
|
|
array equal(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
std::vector<array> inputs = {astype(a, dtype, s), astype(b, dtype, s)};
|
|
if (a.shape() != b.shape()) {
|
|
inputs = broadcast_arrays(inputs, s);
|
|
}
|
|
return array(
|
|
inputs[0].shape(), bool_, std::make_unique<Equal>(to_stream(s)), inputs);
|
|
}
|
|
|
|
array not_equal(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
std::vector<array> inputs = {astype(a, dtype, s), astype(b, dtype, s)};
|
|
if (a.shape() != b.shape()) {
|
|
inputs = broadcast_arrays(inputs, s);
|
|
}
|
|
return array(
|
|
inputs[0].shape(),
|
|
bool_,
|
|
std::make_unique<NotEqual>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array greater(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
std::vector<array> inputs = {astype(a, dtype, s), astype(b, dtype, s)};
|
|
if (a.shape() != b.shape()) {
|
|
inputs = broadcast_arrays(inputs, s);
|
|
}
|
|
return array(
|
|
inputs[0].shape(),
|
|
bool_,
|
|
std::make_unique<Greater>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array greater_equal(
|
|
const array& a,
|
|
const array& b,
|
|
StreamOrDevice s /* = {} */) {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
std::vector<array> inputs = {astype(a, dtype, s), astype(b, dtype, s)};
|
|
if (a.shape() != b.shape()) {
|
|
inputs = broadcast_arrays(inputs, s);
|
|
}
|
|
return array(
|
|
inputs[0].shape(),
|
|
bool_,
|
|
std::make_unique<GreaterEqual>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array less(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
std::vector<array> inputs = {astype(a, dtype, s), astype(b, dtype, s)};
|
|
if (a.shape() != b.shape()) {
|
|
inputs = broadcast_arrays(inputs, s);
|
|
}
|
|
return array(
|
|
inputs[0].shape(), bool_, std::make_unique<Less>(to_stream(s)), inputs);
|
|
}
|
|
|
|
array less_equal(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
std::vector<array> inputs = {astype(a, dtype, s), astype(b, dtype, s)};
|
|
if (a.shape() != b.shape()) {
|
|
inputs = broadcast_arrays(inputs, s);
|
|
}
|
|
return array(
|
|
inputs[0].shape(),
|
|
bool_,
|
|
std::make_unique<LessEqual>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array array_equal(
|
|
const array& a,
|
|
const array& b,
|
|
bool equal_nan,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (a.shape() != b.shape()) {
|
|
return array(false);
|
|
} else {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
equal_nan &= is_floating_point(dtype);
|
|
return all(
|
|
array(
|
|
a.shape(),
|
|
bool_,
|
|
std::make_unique<Equal>(to_stream(s), equal_nan),
|
|
{astype(a, dtype, s), astype(b, dtype, s)}),
|
|
false,
|
|
s);
|
|
}
|
|
}
|
|
|
|
array isnan(const array& a, StreamOrDevice s /* = {} */) {
|
|
if (is_integral(a.dtype())) {
|
|
return full(a.shape(), false, bool_, s);
|
|
}
|
|
return not_equal(a, a, s);
|
|
}
|
|
|
|
array isinf(const array& a, StreamOrDevice s /* = {} */) {
|
|
return logical_or(isposinf(a, s), isneginf(a, s), s);
|
|
}
|
|
|
|
array isposinf(const array& a, StreamOrDevice s /* = {} */) {
|
|
if (is_integral(a.dtype())) {
|
|
return full(a.shape(), false, bool_, s);
|
|
}
|
|
return equal(a, array(std::numeric_limits<float>::infinity(), a.dtype()), s);
|
|
}
|
|
|
|
array isneginf(const array& a, StreamOrDevice s /* = {} */) {
|
|
if (is_integral(a.dtype())) {
|
|
return full(a.shape(), false, bool_, s);
|
|
}
|
|
return equal(a, array(-std::numeric_limits<float>::infinity(), a.dtype()), s);
|
|
}
|
|
|
|
array where(
|
|
const array& a,
|
|
const array& b,
|
|
const array& c,
|
|
StreamOrDevice s /* = {} */) {
|
|
auto condition = astype(a, bool_, s);
|
|
Dtype out_dtype = promote_types(b.dtype(), c.dtype());
|
|
auto inputs = broadcast_arrays(
|
|
{condition, astype(b, out_dtype, s), astype(c, out_dtype, s)}, s);
|
|
|
|
return array(
|
|
inputs[0].shape(),
|
|
out_dtype,
|
|
std::make_unique<Select>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array allclose(
|
|
const array& a,
|
|
const array& b,
|
|
double rtol /* = 1e-5 */,
|
|
double atol /* = 1e-8 */,
|
|
bool equal_nan /* = false */,
|
|
StreamOrDevice s /* = {}*/) {
|
|
return all(isclose(a, b, rtol, atol, equal_nan, s), s);
|
|
}
|
|
|
|
array isclose(
|
|
const array& a,
|
|
const array& b,
|
|
double rtol /* = 1e-5 */,
|
|
double atol /* = 1e-8 */,
|
|
bool equal_nan /* = false */,
|
|
StreamOrDevice s /* = {}*/) {
|
|
// |a - b| <= atol + rtol * |b|
|
|
auto rhs = add(array(atol), multiply(array(rtol), abs(b, s), s), s);
|
|
auto lhs = abs(subtract(a, b, s), s);
|
|
auto out = less_equal(lhs, rhs, s);
|
|
|
|
// Correct the result for infinite values.
|
|
auto any_inf = logical_or(isinf(a, s), isinf(b, s), s);
|
|
auto both_inf = logical_or(
|
|
logical_and(isposinf(a, s), isposinf(b, s), s),
|
|
logical_and(isneginf(a, s), isneginf(b, s), s),
|
|
s);
|
|
|
|
// Convert all elements where either value is infinite to False.
|
|
out = logical_and(out, logical_not(any_inf, s), s);
|
|
|
|
// Convert all the elements where both values are infinite and of the same
|
|
// sign to True.
|
|
out = logical_or(out, both_inf, s);
|
|
|
|
if (equal_nan) {
|
|
auto both_nan = logical_and(isnan(a, s), isnan(b, s), s);
|
|
out = logical_or(out, both_nan, s);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
array all(const array& a, bool keepdims, StreamOrDevice s /* = {}*/) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
return all(a, axes, keepdims, s);
|
|
}
|
|
|
|
array all(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {}*/) {
|
|
if (axes.empty()) {
|
|
return astype(a, bool_, s);
|
|
}
|
|
auto [out_shape, sorted_axes] = compute_reduce_shape(axes, a.shape());
|
|
auto out = array(
|
|
out_shape,
|
|
bool_,
|
|
std::make_unique<Reduce>(to_stream(s), Reduce::And, sorted_axes),
|
|
{a});
|
|
if (!keepdims) {
|
|
out = squeeze(out, sorted_axes, s);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array all(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return all(a, std::vector<int>{axis}, keepdims, s);
|
|
}
|
|
|
|
array any(const array& a, bool keepdims, StreamOrDevice s /* = {}*/) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
return any(a, axes, keepdims, s);
|
|
}
|
|
|
|
array any(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {}*/) {
|
|
if (axes.empty()) {
|
|
return astype(a, bool_, s);
|
|
}
|
|
auto [out_shape, sorted_axes] = compute_reduce_shape(axes, a.shape());
|
|
auto out = array(
|
|
out_shape,
|
|
bool_,
|
|
std::make_unique<Reduce>(to_stream(s), Reduce::Or, sorted_axes),
|
|
{a});
|
|
if (!keepdims) {
|
|
out = squeeze(out, sorted_axes, s);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array any(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return any(a, std::vector<int>{axis}, keepdims, s);
|
|
}
|
|
|
|
array sum(const array& a, bool keepdims, StreamOrDevice s /* = {}*/) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
return sum(a, axes, keepdims, s);
|
|
}
|
|
|
|
array sum(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {}*/) {
|
|
if (axes.empty()) {
|
|
return a;
|
|
}
|
|
auto [out_shape, sorted_axes] = compute_reduce_shape(axes, a.shape());
|
|
auto out_type = a.dtype() == bool_ ? int32 : a.dtype();
|
|
auto out = array(
|
|
out_shape,
|
|
out_type,
|
|
std::make_unique<Reduce>(to_stream(s), Reduce::Sum, sorted_axes),
|
|
{a});
|
|
if (!keepdims) {
|
|
out = squeeze(out, sorted_axes, s);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array sum(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return sum(a, std::vector<int>{axis}, keepdims, s);
|
|
}
|
|
|
|
array mean(const array& a, bool keepdims, StreamOrDevice s /* = {}*/) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
return mean(a, axes, keepdims, to_stream(s));
|
|
}
|
|
|
|
array mean(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {}*/) {
|
|
int ndim = a.ndim();
|
|
for (int axis : axes) {
|
|
if (axis < -ndim || axis >= ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[mean] axis " << axis << " is out of bounds for array with "
|
|
<< ndim << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
auto nelements = compute_number_of_elements(a, axes);
|
|
auto dtype = at_least_float(a.dtype());
|
|
return multiply(sum(a, axes, keepdims, s), array(1.0 / nelements, dtype), s);
|
|
}
|
|
|
|
array mean(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return mean(a, std::vector<int>{axis}, keepdims, to_stream(s));
|
|
}
|
|
|
|
array var(
|
|
const array& a,
|
|
bool keepdims,
|
|
int ddof /* = 0*/,
|
|
StreamOrDevice s /* = {}*/) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
return var(a, axes, keepdims, ddof, to_stream(s));
|
|
}
|
|
|
|
array var(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
bool keepdims /* = false */,
|
|
int ddof /* = 0*/,
|
|
StreamOrDevice s /* = {}*/) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto mu2 = square(mean(a, axes, keepdims, s), s);
|
|
auto a2 = mean(square(a, s), axes, keepdims, s);
|
|
auto v = subtract(a2, mu2, s);
|
|
|
|
if (ddof != 0) {
|
|
auto nelements = compute_number_of_elements(a, axes);
|
|
auto factor = nelements / static_cast<float>(std::max(nelements - ddof, 0));
|
|
v = multiply(v, array(factor, dtype), s);
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
array var(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
int ddof /* = 0*/,
|
|
StreamOrDevice s /* = {} */) {
|
|
return var(a, std::vector<int>{axis}, keepdims, ddof, to_stream(s));
|
|
}
|
|
|
|
array prod(const array& a, bool keepdims, StreamOrDevice s /* = {}*/) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
return prod(a, axes, keepdims, s);
|
|
}
|
|
|
|
array prod(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {}*/) {
|
|
if (axes.empty()) {
|
|
return a;
|
|
}
|
|
auto [out_shape, sorted_axes] = compute_reduce_shape(axes, a.shape());
|
|
auto out = array(
|
|
out_shape,
|
|
a.dtype(),
|
|
std::make_unique<Reduce>(to_stream(s), Reduce::Prod, sorted_axes),
|
|
{a});
|
|
if (!keepdims) {
|
|
out = squeeze(out, sorted_axes, s);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array prod(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return prod(a, std::vector<int>{axis}, keepdims, s);
|
|
}
|
|
|
|
array max(const array& a, bool keepdims, StreamOrDevice s /* = {}*/) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
return max(a, axes, keepdims, s);
|
|
}
|
|
|
|
array max(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {}*/) {
|
|
if (a.size() == 0) {
|
|
throw std::invalid_argument("[max] Cannot max reduce zero size array.");
|
|
}
|
|
if (axes.empty()) {
|
|
return a;
|
|
}
|
|
auto [out_shape, sorted_axes] = compute_reduce_shape(axes, a.shape());
|
|
auto out = array(
|
|
out_shape,
|
|
a.dtype(),
|
|
std::make_unique<Reduce>(to_stream(s), Reduce::Max, sorted_axes),
|
|
{a});
|
|
if (!keepdims) {
|
|
out = squeeze(out, sorted_axes, s);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array max(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return max(a, std::vector<int>{axis}, keepdims, s);
|
|
}
|
|
|
|
array min(const array& a, bool keepdims, StreamOrDevice s /* = {}*/) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
return min(a, axes, keepdims, s);
|
|
}
|
|
|
|
array min(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {}*/) {
|
|
if (a.size() == 0) {
|
|
throw std::invalid_argument("[min] Cannot min reduce zero size array.");
|
|
}
|
|
if (axes.empty()) {
|
|
return a;
|
|
}
|
|
auto [out_shape, sorted_axes] = compute_reduce_shape(axes, a.shape());
|
|
auto out = array(
|
|
out_shape,
|
|
a.dtype(),
|
|
std::make_unique<Reduce>(to_stream(s), Reduce::Min, sorted_axes),
|
|
{a});
|
|
if (!keepdims) {
|
|
out = squeeze(out, sorted_axes, s);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array min(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return min(a, std::vector<int>{axis}, keepdims, s);
|
|
}
|
|
|
|
array argmin(const array& a, bool keepdims, StreamOrDevice s /* = {} */) {
|
|
int size = a.size();
|
|
auto result = argmin(reshape(a, {size}, s), 0, false, s);
|
|
if (keepdims) {
|
|
result = reshape(result, std::vector<int>(a.shape().size(), 1), s);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
array argmin(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (a.size() == 0) {
|
|
throw std::invalid_argument(
|
|
"[argmin] Cannot argmin reduce zero size array.");
|
|
}
|
|
auto [out_shape, sorted_axes] = compute_reduce_shape({axis}, a.shape());
|
|
auto out = array(
|
|
out_shape,
|
|
uint32,
|
|
std::make_unique<ArgReduce>(
|
|
to_stream(s), ArgReduce::ArgMin, sorted_axes[0]),
|
|
{a});
|
|
if (!keepdims) {
|
|
out = squeeze(out, sorted_axes, s);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array argmax(const array& a, bool keepdims, StreamOrDevice s /* = {} */) {
|
|
int size = a.size();
|
|
auto result = argmax(reshape(a, {size}, s), 0, false, s);
|
|
if (keepdims) {
|
|
result = reshape(result, std::vector<int>(a.shape().size(), 1), s);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
array argmax(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (a.size() == 0) {
|
|
throw std::invalid_argument(
|
|
"[argmax] Cannot argmax reduce zero size array.");
|
|
}
|
|
auto [out_shape, sorted_axes] = compute_reduce_shape({axis}, a.shape());
|
|
auto out = array(
|
|
out_shape,
|
|
uint32,
|
|
std::make_unique<ArgReduce>(
|
|
to_stream(s), ArgReduce::ArgMax, sorted_axes[0]),
|
|
{a});
|
|
if (!keepdims) {
|
|
out = squeeze(out, sorted_axes, s);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
/** Returns a sorted copy of the flattened array. */
|
|
array sort(const array& a, StreamOrDevice s /* = {} */) {
|
|
int size = a.size();
|
|
return sort(reshape(a, {size}, s), 0, s);
|
|
}
|
|
|
|
/** Returns a sorted copy of the array along a given axis. */
|
|
array sort(const array& a, int axis, StreamOrDevice s /* = {} */) {
|
|
// Check for valid axis
|
|
if (axis + static_cast<int>(a.ndim()) < 0 ||
|
|
axis >= static_cast<int>(a.ndim())) {
|
|
std::ostringstream msg;
|
|
msg << "[sort] Received invalid axis " << axis << " for array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// TODO: Fix GPU kernel
|
|
if (a.shape(axis) >= (1u << 21) && to_stream(s).device.type == Device::gpu) {
|
|
std::ostringstream msg;
|
|
msg << "[sort] GPU sort cannot handle sort axis of >= 2M elements,"
|
|
<< " got array with sort axis size " << a.shape(axis) << "."
|
|
<< " Please place this operation on the CPU instead.";
|
|
throw std::runtime_error(msg.str());
|
|
}
|
|
|
|
return array(
|
|
a.shape(), a.dtype(), std::make_unique<Sort>(to_stream(s), axis), {a});
|
|
}
|
|
|
|
/** Returns indices that sort the flattened array. */
|
|
array argsort(const array& a, StreamOrDevice s /* = {} */) {
|
|
int size = a.size();
|
|
return argsort(reshape(a, {size}, s), 0, s);
|
|
}
|
|
|
|
/** Returns indices that sort the array along a given axis. */
|
|
array argsort(const array& a, int axis, StreamOrDevice s /* = {} */) {
|
|
// Check for valid axis
|
|
if (axis + static_cast<int>(a.ndim()) < 0 ||
|
|
axis >= static_cast<int>(a.ndim())) {
|
|
std::ostringstream msg;
|
|
msg << "[argsort] Received invalid axis " << axis << " for array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// TODO: Fix GPU kernel
|
|
if (a.shape(axis) >= (1u << 21) && to_stream(s).device.type == Device::gpu) {
|
|
std::ostringstream msg;
|
|
msg << "[argsort] GPU sort cannot handle sort axis of >= 2M elements,"
|
|
<< " got array with sort axis size " << a.shape(axis) << "."
|
|
<< " Please place this operation on the CPU instead.";
|
|
throw std::runtime_error(msg.str());
|
|
}
|
|
|
|
return array(
|
|
a.shape(), uint32, std::make_unique<ArgSort>(to_stream(s), axis), {a});
|
|
}
|
|
|
|
/**
|
|
* Returns a partitioned copy of the flattened array
|
|
* such that the smaller kth elements are first.
|
|
**/
|
|
array partition(const array& a, int kth, StreamOrDevice s /* = {} */) {
|
|
int size = a.size();
|
|
return partition(reshape(a, {size}, s), kth, 0, s);
|
|
}
|
|
|
|
/**
|
|
* Returns a partitioned copy of the array along a given axis
|
|
* such that the smaller kth elements are first.
|
|
**/
|
|
array partition(
|
|
const array& a,
|
|
int kth,
|
|
int axis,
|
|
StreamOrDevice s /* = {} */) {
|
|
// Check for valid axis
|
|
if (axis + static_cast<int>(a.ndim()) < 0 ||
|
|
axis >= static_cast<int>(a.ndim())) {
|
|
std::ostringstream msg;
|
|
msg << "[partition] Received invalid axis " << axis << " for array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
int axis_ = axis < 0 ? axis + a.ndim() : axis;
|
|
int kth_ = kth < 0 ? kth + a.shape(axis) : kth;
|
|
if (kth_ < 0 || kth_ >= a.shape(axis_)) {
|
|
std::ostringstream msg;
|
|
msg << "[partition] Received invalid kth " << kth << "along axis " << axis
|
|
<< " for array with shape: " << a.shape();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
return array(
|
|
a.shape(),
|
|
a.dtype(),
|
|
std::make_unique<Partition>(to_stream(s), kth_, axis_),
|
|
{a});
|
|
}
|
|
|
|
/**
|
|
* Returns indices that partition the flattened array
|
|
* such that the smaller kth elements are first.
|
|
**/
|
|
array argpartition(const array& a, int kth, StreamOrDevice s /* = {} */) {
|
|
int size = a.size();
|
|
return argpartition(reshape(a, {size}, s), kth, 0, s);
|
|
}
|
|
|
|
/**
|
|
* Returns indices that partition the array along a given axis
|
|
* such that the smaller kth elements are first.
|
|
**/
|
|
array argpartition(
|
|
const array& a,
|
|
int kth,
|
|
int axis,
|
|
StreamOrDevice s /* = {} */) {
|
|
// Check for valid axis
|
|
if (axis + static_cast<int>(a.ndim()) < 0 ||
|
|
axis >= static_cast<int>(a.ndim())) {
|
|
std::ostringstream msg;
|
|
msg << "[argpartition] Received invalid axis " << axis << " for array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
int axis_ = axis < 0 ? axis + a.ndim() : axis;
|
|
int kth_ = kth < 0 ? kth + a.shape(axis) : kth;
|
|
if (kth_ < 0 || kth_ >= a.shape(axis_)) {
|
|
std::ostringstream msg;
|
|
msg << "[argpartition] Received invalid kth " << kth << " along axis "
|
|
<< axis << " for array with shape: " << a.shape();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
return array(
|
|
a.shape(),
|
|
uint32,
|
|
std::make_unique<ArgPartition>(to_stream(s), kth_, axis_),
|
|
{a});
|
|
}
|
|
|
|
/** Returns topk elements of the flattened array. */
|
|
array topk(const array& a, int k, StreamOrDevice s /* = {}*/) {
|
|
int size = a.size();
|
|
return topk(reshape(a, {size}, s), k, 0, s);
|
|
}
|
|
|
|
/** Returns topk elements of the array along a given axis. */
|
|
array topk(const array& a, int k, int axis, StreamOrDevice s /* = {}*/) {
|
|
// Check for valid axis
|
|
int axis_ = axis < 0 ? axis + a.ndim() : axis;
|
|
if (axis_ < 0 || axis_ >= static_cast<int>(a.ndim())) {
|
|
std::ostringstream msg;
|
|
msg << "[topk] Received invalid axis " << axis << " for array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (k < 0 || k > a.shape(axis_)) {
|
|
std::ostringstream msg;
|
|
msg << "[topk] Received invalid k=" << k << " along axis " << axis
|
|
<< " for array with shape: " << a.shape();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// Return early if the whole input was requested.
|
|
if (k == a.shape(axis_)) {
|
|
return a;
|
|
}
|
|
|
|
array a_partitioned = partition(a, -k, axis_, s);
|
|
std::vector<int> slice_starts(a.ndim(), 0);
|
|
std::vector<int> slice_ends = a.shape();
|
|
slice_starts[axis_] = a.shape(axis_) - k;
|
|
return slice(a_partitioned, slice_starts, slice_ends, s);
|
|
}
|
|
|
|
array logsumexp(const array& a, bool keepdims, StreamOrDevice s /* = {}*/) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
return logsumexp(a, axes, keepdims, s);
|
|
}
|
|
|
|
array logsumexp(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {}*/) {
|
|
auto maxval = stop_gradient(max(a, axes, true, s));
|
|
auto out = log(sum(exp(subtract(a, maxval, s), s), axes, keepdims, s), s);
|
|
out = add(out, reshape(maxval, out.shape(), s), s);
|
|
if (!keepdims) {
|
|
maxval = squeeze(maxval, axes, s);
|
|
}
|
|
return where(isinf(maxval, s), maxval, out, s);
|
|
}
|
|
|
|
array logsumexp(
|
|
const array& a,
|
|
int axis,
|
|
bool keepdims /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return logsumexp(a, std::vector<int>{axis}, keepdims, s);
|
|
}
|
|
|
|
array abs(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto out =
|
|
array(a.shape(), a.dtype(), std::make_unique<Abs>(to_stream(s)), {a});
|
|
if (a.dtype() == complex64) {
|
|
out = astype(out, float32, s);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array negative(const array& a, StreamOrDevice s /* = {} */) {
|
|
if (a.dtype() == bool_) {
|
|
auto msg = "[negative] Not supported for bool, use logical_not instead.";
|
|
throw std::invalid_argument(msg);
|
|
}
|
|
return array(
|
|
a.shape(), a.dtype(), std::make_unique<Negative>(to_stream(s)), {a});
|
|
}
|
|
array operator-(const array& a) {
|
|
return negative(a);
|
|
}
|
|
|
|
array sign(const array& a, StreamOrDevice s /* = {} */) {
|
|
return array(a.shape(), a.dtype(), std::make_unique<Sign>(to_stream(s)), {a});
|
|
}
|
|
|
|
array logical_not(const array& a, StreamOrDevice s /* = {} */) {
|
|
return array(
|
|
a.shape(),
|
|
bool_,
|
|
std::make_unique<LogicalNot>(to_stream(s)),
|
|
{astype(a, bool_, s)});
|
|
}
|
|
|
|
array logical_and(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
// Broadcast arrays to a common shape
|
|
auto inputs = broadcast_arrays({astype(a, bool_, s), astype(b, bool_, s)}, s);
|
|
|
|
return array(
|
|
inputs[0].shape(),
|
|
bool_,
|
|
std::make_unique<LogicalAnd>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
array operator&&(const array& a, const array& b) {
|
|
return logical_and(a, b);
|
|
}
|
|
|
|
array logical_or(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
// Broadcast arrays to a common shape
|
|
auto inputs = broadcast_arrays({astype(a, bool_, s), astype(b, bool_, s)}, s);
|
|
|
|
return array(
|
|
inputs[0].shape(),
|
|
bool_,
|
|
std::make_unique<LogicalOr>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
array operator||(const array& a, const array& b) {
|
|
return logical_or(a, b);
|
|
}
|
|
|
|
array reciprocal(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
return divide(array(1.0f, dtype), a, to_stream(s));
|
|
}
|
|
|
|
array add(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto out_type = promote_types(a.dtype(), b.dtype());
|
|
auto inputs =
|
|
broadcast_arrays({astype(a, out_type, s), astype(b, out_type, s)}, s);
|
|
return array(
|
|
inputs[0].shape(), out_type, std::make_unique<Add>(to_stream(s)), inputs);
|
|
}
|
|
|
|
array operator+(const array& a, const array& b) {
|
|
return add(a, b);
|
|
}
|
|
|
|
array subtract(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto out_type = promote_types(a.dtype(), b.dtype());
|
|
auto inputs =
|
|
broadcast_arrays({astype(a, out_type, s), astype(b, out_type, s)}, s);
|
|
return array(
|
|
inputs[0].shape(),
|
|
out_type,
|
|
std::make_unique<Subtract>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array operator-(const array& a, const array& b) {
|
|
return subtract(a, b);
|
|
}
|
|
|
|
array multiply(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto out_type = promote_types(a.dtype(), b.dtype());
|
|
auto inputs =
|
|
broadcast_arrays({astype(a, out_type, s), astype(b, out_type, s)}, s);
|
|
return array(
|
|
inputs[0].shape(),
|
|
out_type,
|
|
std::make_unique<Multiply>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array operator*(const array& a, const array& b) {
|
|
return multiply(a, b);
|
|
}
|
|
|
|
array divide(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(promote_types(a.dtype(), b.dtype()));
|
|
auto inputs = broadcast_arrays(
|
|
{astype(a, dtype, s), astype(b, dtype, to_stream(s))}, s);
|
|
return array(
|
|
inputs[0].shape(), dtype, std::make_unique<Divide>(to_stream(s)), inputs);
|
|
}
|
|
array operator/(const array& a, const array& b) {
|
|
return divide(a, b);
|
|
}
|
|
array operator/(double a, const array& b) {
|
|
return divide(array(a), b);
|
|
}
|
|
array operator/(const array& a, double b) {
|
|
return divide(a, array(b));
|
|
}
|
|
|
|
array floor_divide(
|
|
const array& a,
|
|
const array& b,
|
|
StreamOrDevice s /* = {} */) {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
if (is_floating_point(dtype)) {
|
|
return floor(divide(a, b, s), s);
|
|
}
|
|
|
|
auto inputs = broadcast_arrays({astype(a, dtype, s), astype(b, dtype, s)}, s);
|
|
return array(
|
|
inputs[0].shape(), dtype, std::make_unique<Divide>(to_stream(s)), inputs);
|
|
}
|
|
|
|
array remainder(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
auto inputs = broadcast_arrays(
|
|
{astype(a, dtype, s), astype(b, dtype, to_stream(s))}, s);
|
|
return array(
|
|
inputs[0].shape(),
|
|
dtype,
|
|
std::make_unique<Remainder>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
array operator%(const array& a, const array& b) {
|
|
return remainder(a, b);
|
|
}
|
|
|
|
std::vector<array>
|
|
divmod(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
if (is_complex(dtype)) {
|
|
throw std::invalid_argument("[divmod] Complex type not supported.");
|
|
}
|
|
auto inputs = broadcast_arrays(
|
|
{astype(a, dtype, s), astype(b, dtype, to_stream(s))}, s);
|
|
return array::make_arrays(
|
|
{inputs[0].shape(), inputs[0].shape()},
|
|
{inputs[0].dtype(), inputs[0].dtype()},
|
|
std::make_unique<DivMod>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array maximum(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto out_type = promote_types(a.dtype(), b.dtype());
|
|
auto inputs =
|
|
broadcast_arrays({astype(a, out_type, s), astype(b, out_type, s)}, s);
|
|
return array(
|
|
inputs[0].shape(),
|
|
out_type,
|
|
std::make_unique<Maximum>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array minimum(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto out_type = promote_types(a.dtype(), b.dtype());
|
|
auto inputs =
|
|
broadcast_arrays({astype(a, out_type, s), astype(b, out_type, s)}, s);
|
|
return array(
|
|
inputs[0].shape(),
|
|
out_type,
|
|
std::make_unique<Minimum>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array floor(const array& a, StreamOrDevice s /* = {} */) {
|
|
if (a.dtype() == complex64) {
|
|
throw std::invalid_argument("[floor] Not supported for complex64.");
|
|
}
|
|
return array(
|
|
a.shape(), a.dtype(), std::make_unique<Floor>(to_stream(s)), {a});
|
|
}
|
|
|
|
array ceil(const array& a, StreamOrDevice s /* = {} */) {
|
|
if (a.dtype() == complex64) {
|
|
throw std::invalid_argument("[floor] Not supported for complex64.");
|
|
}
|
|
return array(a.shape(), a.dtype(), std::make_unique<Ceil>(to_stream(s)), {a});
|
|
}
|
|
|
|
array square(const array& a, StreamOrDevice s /* = {} */) {
|
|
return array(
|
|
a.shape(), a.dtype(), std::make_unique<Square>(to_stream(s)), {a});
|
|
}
|
|
|
|
array exp(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(a.shape(), dtype, std::make_unique<Exp>(to_stream(s)), {input});
|
|
}
|
|
|
|
array sin(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(a.shape(), dtype, std::make_unique<Sin>(to_stream(s)), {input});
|
|
}
|
|
|
|
array cos(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(a.shape(), dtype, std::make_unique<Cos>(to_stream(s)), {input});
|
|
}
|
|
|
|
array tan(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(a.shape(), dtype, std::make_unique<Tan>(to_stream(s)), {input});
|
|
}
|
|
|
|
array arcsin(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(), dtype, std::make_unique<ArcSin>(to_stream(s)), {input});
|
|
}
|
|
|
|
array arccos(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(), dtype, std::make_unique<ArcCos>(to_stream(s)), {input});
|
|
}
|
|
|
|
array arctan(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(), dtype, std::make_unique<ArcTan>(to_stream(s)), {input});
|
|
}
|
|
|
|
array sinh(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(a.shape(), dtype, std::make_unique<Sinh>(to_stream(s)), {input});
|
|
}
|
|
|
|
array cosh(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(a.shape(), dtype, std::make_unique<Cosh>(to_stream(s)), {input});
|
|
}
|
|
|
|
array tanh(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(a.shape(), dtype, std::make_unique<Tanh>(to_stream(s)), {input});
|
|
}
|
|
|
|
array arcsinh(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(), dtype, std::make_unique<ArcSinh>(to_stream(s)), {input});
|
|
}
|
|
|
|
array arccosh(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(), dtype, std::make_unique<ArcCosh>(to_stream(s)), {input});
|
|
}
|
|
|
|
array arctanh(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(), dtype, std::make_unique<ArcTanh>(to_stream(s)), {input});
|
|
}
|
|
|
|
array log(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(),
|
|
dtype,
|
|
std::make_unique<Log>(to_stream(s), Log::Base::e),
|
|
{input});
|
|
}
|
|
|
|
array log2(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(),
|
|
dtype,
|
|
std::make_unique<Log>(to_stream(s), Log::Base::two),
|
|
{input});
|
|
}
|
|
|
|
array log10(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(),
|
|
dtype,
|
|
std::make_unique<Log>(to_stream(s), Log::Base::ten),
|
|
{input});
|
|
}
|
|
|
|
array log1p(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(), dtype, std::make_unique<Log1p>(to_stream(s)), {input});
|
|
}
|
|
|
|
array logaddexp(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
// Make sure out type is floating point
|
|
auto out_type = at_least_float(promote_types(a.dtype(), b.dtype()));
|
|
auto inputs =
|
|
broadcast_arrays({astype(a, out_type, s), astype(b, out_type, s)}, s);
|
|
return array(
|
|
inputs[0].shape(),
|
|
out_type,
|
|
std::make_unique<LogAddExp>(to_stream(s)),
|
|
inputs);
|
|
}
|
|
|
|
array sigmoid(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
auto input = astype(a, dtype, s);
|
|
return array(
|
|
a.shape(), dtype, std::make_unique<Sigmoid>(to_stream(s)), {input});
|
|
}
|
|
|
|
array erf(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
return array(
|
|
a.shape(),
|
|
dtype,
|
|
std::make_unique<Erf>(to_stream(s)),
|
|
{astype(a, dtype, s)});
|
|
}
|
|
|
|
array erfinv(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
return array(
|
|
a.shape(),
|
|
dtype,
|
|
std::make_unique<ErfInv>(to_stream(s)),
|
|
{astype(a, dtype, s)});
|
|
}
|
|
|
|
array stop_gradient(const array& a, StreamOrDevice s /* = {} */) {
|
|
return array(
|
|
a.shape(), a.dtype(), std::make_unique<StopGradient>(to_stream(s)), {a});
|
|
}
|
|
|
|
array round(const array& a, int decimals, StreamOrDevice s /* = {} */) {
|
|
if (decimals == 0) {
|
|
return array(
|
|
a.shape(), a.dtype(), std::make_unique<Round>(to_stream(s)), {a});
|
|
}
|
|
|
|
auto dtype = at_least_float(a.dtype());
|
|
float scale = std::pow(10, decimals);
|
|
auto result = multiply(a, array(scale, dtype), s);
|
|
result = round(result, 0, s);
|
|
result = multiply(result, array(1 / scale, dtype), s);
|
|
|
|
return astype(result, a.dtype(), s);
|
|
}
|
|
|
|
array matmul(
|
|
const array& in_a,
|
|
const array& in_b,
|
|
StreamOrDevice s /* = {} */) {
|
|
auto a = in_a;
|
|
auto b = in_b;
|
|
if (a.ndim() == 0 || b.ndim() == 0) {
|
|
throw std::invalid_argument(
|
|
"[matmul] Got 0 dimension input. Inputs must "
|
|
"have at least one dimension.");
|
|
}
|
|
if (a.ndim() == 1) {
|
|
// Insert a singleton dim in the beginning
|
|
a = reshape(a, {1, -1}, s);
|
|
}
|
|
if (b.ndim() == 1) {
|
|
// Insert a singleton dim at the end
|
|
b = reshape(b, {-1, 1}, s);
|
|
}
|
|
if (a.shape(-1) != b.shape(-2)) {
|
|
std::ostringstream msg;
|
|
msg << "[matmul] Last dimension of first input with shape " << a.shape()
|
|
<< " must match second to last dimension of"
|
|
<< " second input with shape " << b.shape() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
// Type promotion
|
|
auto out_type = promote_types(a.dtype(), b.dtype());
|
|
if (!is_floating_point(out_type) || is_complex(out_type)) {
|
|
std::ostringstream msg;
|
|
msg << "[matmul] Only real floating point types are supported but "
|
|
<< a.dtype() << " and " << b.dtype() << " were provided which results"
|
|
<< " in " << out_type << ", which is not a real floating point type.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (a.dtype() != out_type) {
|
|
a = astype(a, out_type, s);
|
|
}
|
|
if (b.dtype() != out_type) {
|
|
b = astype(b, out_type, s);
|
|
}
|
|
|
|
// We can batch the multiplication by reshaping a
|
|
if (a.ndim() > 2 && b.ndim() == 2) {
|
|
std::vector<int> out_shape = a.shape();
|
|
a = reshape(a, {-1, out_shape.back()}, s);
|
|
out_shape.back() = b.shape(-1);
|
|
if (in_b.ndim() == 1) {
|
|
out_shape.pop_back();
|
|
}
|
|
auto out = array(
|
|
{a.shape(0), b.shape(1)},
|
|
out_type,
|
|
std::make_unique<Matmul>(to_stream(s)),
|
|
{a, b});
|
|
return reshape(out, out_shape, s);
|
|
}
|
|
|
|
if (a.ndim() > 2 || b.ndim() > 2) {
|
|
std::vector<int> bsx_a(a.shape().begin(), a.shape().end() - 2);
|
|
std::vector<int> bsx_b(b.shape().begin(), b.shape().end() - 2);
|
|
auto inner_shape = broadcast_shapes(bsx_a, bsx_b);
|
|
|
|
// Broadcast a
|
|
inner_shape.push_back(a.shape(-2));
|
|
inner_shape.push_back(a.shape(-1));
|
|
a = broadcast_to(a, inner_shape, s);
|
|
|
|
// Broadcast b
|
|
*(inner_shape.end() - 2) = b.shape(-2);
|
|
*(inner_shape.end() - 1) = b.shape(-1);
|
|
b = broadcast_to(b, inner_shape, s);
|
|
}
|
|
|
|
auto out_shape = a.shape();
|
|
out_shape.back() = b.shape(-1);
|
|
|
|
auto out = array(
|
|
out_shape, out_type, std::make_unique<Matmul>(to_stream(s)), {a, b});
|
|
|
|
// Remove the possibly inserted singleton dimensions
|
|
if (in_a.ndim() == 1 || in_b.ndim() == 1) {
|
|
out_shape.erase(
|
|
out_shape.end() - ((in_a.ndim() == 1) ? 2 : 1),
|
|
out_shape.end() - ((in_b.ndim() == 1) ? 0 : 1));
|
|
out = reshape(out, out_shape, s);
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array gather(
|
|
const array& a,
|
|
const std::vector<array>& indices,
|
|
const std::vector<int>& axes,
|
|
const std::vector<int>& slice_sizes,
|
|
StreamOrDevice s /* = {} */) {
|
|
// Checks that indices, dimensions, and slice_sizes are all valid
|
|
if (indices.size() > a.ndim()) {
|
|
std::ostringstream msg;
|
|
msg << "[gather] Too many index arrays. Got " << indices.size()
|
|
<< " index arrays for input with " << a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
std::set dims(axes.begin(), axes.end());
|
|
if (dims.size() != axes.size()) {
|
|
throw std::invalid_argument("[gather] Repeat axes not allowed in gather.");
|
|
}
|
|
if (!dims.empty() && (*dims.begin() < 0 || *dims.rbegin() >= a.ndim())) {
|
|
throw std::invalid_argument("[gather] Axes don't match array dimensions.");
|
|
}
|
|
if (indices.size() != axes.size()) {
|
|
throw std::invalid_argument(
|
|
"[gather] Number of index arrays does not match number of axes.");
|
|
}
|
|
for (auto& x : indices) {
|
|
if (x.dtype() == bool_) {
|
|
throw("[Gather] Boolean indices not supported.");
|
|
}
|
|
}
|
|
|
|
if (slice_sizes.size() != a.ndim()) {
|
|
std::ostringstream msg;
|
|
msg << "[gather] Got slice_sizes with size " << slice_sizes.size()
|
|
<< " for array with " << a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
for (int i = 0; i < a.ndim(); ++i) {
|
|
if (slice_sizes[i] < 0 || slice_sizes[i] > a.shape(i)) {
|
|
std::ostringstream msg;
|
|
msg << "[gather] Slice sizes must be in [0, a.shape(i)]. Got "
|
|
<< slice_sizes << " for array with shape " << a.shape() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
|
|
// Promote indices to the same type
|
|
auto dtype = result_type(indices);
|
|
if (!is_integral(dtype)) {
|
|
throw std::invalid_argument(
|
|
"[gather] Got indices with invalid dtype. Indices must be integral.");
|
|
}
|
|
|
|
// Broadcast and cast indices if necessary
|
|
auto inputs = broadcast_arrays(indices);
|
|
for (auto& idx : inputs) {
|
|
idx = astype(idx, dtype, s);
|
|
}
|
|
|
|
std::vector<int> out_shape;
|
|
if (!inputs.empty()) {
|
|
out_shape = inputs[0].shape();
|
|
}
|
|
out_shape.insert(out_shape.end(), slice_sizes.begin(), slice_sizes.end());
|
|
|
|
inputs.insert(inputs.begin(), a);
|
|
return array(
|
|
out_shape,
|
|
a.dtype(),
|
|
std::make_unique<Gather>(to_stream(s), axes, slice_sizes),
|
|
inputs);
|
|
}
|
|
|
|
array take(
|
|
const array& a,
|
|
const array& indices,
|
|
int axis,
|
|
StreamOrDevice s /* = {} */) {
|
|
// Check for valid axis
|
|
if (axis + static_cast<int>(a.ndim()) < 0 ||
|
|
axis >= static_cast<int>(a.ndim())) {
|
|
std::ostringstream msg;
|
|
msg << "[take] Received invalid axis " << axis << " for array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// Check for valid take
|
|
if (a.size() == 0 && indices.size() != 0) {
|
|
throw std::invalid_argument(
|
|
"[take] Cannot do a non-empty take from an array with zero elements.");
|
|
}
|
|
|
|
// Handle negative axis
|
|
axis = axis < 0 ? a.ndim() + axis : axis;
|
|
|
|
// Make slice sizes to pass to gather
|
|
std::vector<int> slice_sizes = a.shape();
|
|
slice_sizes[axis] = indices.size() > 0 ? 1 : 0;
|
|
|
|
auto out = gather(a, indices, axis, slice_sizes, s);
|
|
|
|
// Transpose indices dimensions to axis dimension
|
|
if (axis != 0) {
|
|
std::vector<int> t_axes(out.ndim());
|
|
std::iota(t_axes.begin(), t_axes.begin() + axis, indices.ndim());
|
|
std::iota(t_axes.begin() + axis, t_axes.begin() + axis + indices.ndim(), 0);
|
|
std::iota(
|
|
t_axes.begin() + axis + indices.ndim(),
|
|
t_axes.end(),
|
|
indices.ndim() + axis);
|
|
out = transpose(out, t_axes, s);
|
|
}
|
|
|
|
// Squeeze the axis we take over
|
|
std::vector<int> out_shape = out.shape();
|
|
out_shape.erase(out_shape.begin() + indices.ndim() + axis);
|
|
return reshape(out, out_shape, s);
|
|
}
|
|
|
|
array take(const array& a, const array& indices, StreamOrDevice s /* = {} */) {
|
|
return take(reshape(a, {-1}, s), indices, 0, s);
|
|
}
|
|
|
|
array take_along_axis(
|
|
const array& a,
|
|
const array& indices,
|
|
int axis,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (axis + a.ndim() < 0 || axis >= static_cast<int>(a.ndim())) {
|
|
std::ostringstream msg;
|
|
msg << "[take_along_axis] Received invalid axis "
|
|
<< " for array with " << a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (indices.ndim() != a.ndim()) {
|
|
std::ostringstream msg;
|
|
msg << "[take_along_axis] Indices of dimension " << indices.ndim()
|
|
<< " does not match array of dimension " << a.ndim() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// Allow negative axis
|
|
axis = axis < 0 ? a.ndim() + axis : axis;
|
|
|
|
std::vector<array> nd_indices;
|
|
std::vector<int> index_shape(a.ndim(), 1);
|
|
for (int i = 0; i < a.ndim(); ++i) {
|
|
if (i == axis) {
|
|
nd_indices.push_back(indices);
|
|
} else {
|
|
// Reshape so they can be broadcast
|
|
index_shape[i] = a.shape(i);
|
|
nd_indices.push_back(reshape(arange(a.shape(i), s), index_shape, s));
|
|
index_shape[i] = 1;
|
|
}
|
|
}
|
|
std::vector<int> dims(a.ndim());
|
|
std::iota(dims.begin(), dims.end(), 0);
|
|
std::vector<int> slice_sizes(a.ndim(), a.size() > 0);
|
|
auto out = gather(a, nd_indices, dims, slice_sizes, s);
|
|
|
|
// Squeeze out the slice shape
|
|
std::vector<int> out_shape(
|
|
out.shape().begin(), out.shape().begin() + a.ndim());
|
|
return reshape(out, out_shape, s);
|
|
}
|
|
|
|
/** Scatter updates to given indices */
|
|
array scatter(
|
|
const array& a,
|
|
const std::vector<array>& indices,
|
|
const array& updates,
|
|
const std::vector<int>& axes,
|
|
Scatter::ReduceType mode /*= Scatter::ReduceType::None*/,
|
|
StreamOrDevice s /*= {}*/) {
|
|
// Checks that indices, dimensions, and slice_sizes are all valid
|
|
if (indices.size() > a.ndim()) {
|
|
std::ostringstream msg;
|
|
msg << "[scatter] Too many index arrays. Got " << indices.size()
|
|
<< " index arrays for input with " << a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
for (auto& x : indices) {
|
|
if (x.dtype() == bool_) {
|
|
throw("[scatter] Boolean indices not supported.");
|
|
}
|
|
}
|
|
|
|
std::set dims(axes.begin(), axes.end());
|
|
if (dims.size() != axes.size()) {
|
|
throw std::invalid_argument(
|
|
"[scatter] Repeat axes not allowed in scatter.");
|
|
}
|
|
if (!dims.empty() && (*dims.begin() < 0 || *dims.rbegin() >= a.ndim())) {
|
|
throw std::invalid_argument("[scatter] Axes don't match array dimensions.");
|
|
}
|
|
if (indices.size() != axes.size()) {
|
|
throw std::invalid_argument(
|
|
"[scatter] Number of index arrays does not match number of axes.");
|
|
}
|
|
|
|
// Broadcast and cast indices if necessary
|
|
auto inputs = broadcast_arrays(indices);
|
|
|
|
std::vector<int> idx_shape;
|
|
if (!inputs.empty()) {
|
|
idx_shape = inputs[0].shape();
|
|
}
|
|
|
|
if (updates.ndim() != (a.ndim() + idx_shape.size())) {
|
|
std::ostringstream msg;
|
|
msg << "[scatter] Updates with " << updates.ndim()
|
|
<< " dimensions does not match the sum of the array and indices "
|
|
"dimensions "
|
|
<< a.ndim() + idx_shape.size() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
for (int i = 0; i < idx_shape.size(); ++i) {
|
|
if (updates.shape(i) != idx_shape[i]) {
|
|
std::ostringstream msg;
|
|
msg << "[scatter] Update shape " << updates.shape()
|
|
<< " is not valid for broadcasted index shape " << idx_shape << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
for (int i = 0; i < a.ndim(); ++i) {
|
|
auto up_shape = updates.shape(i + idx_shape.size());
|
|
if (up_shape > a.shape(i)) {
|
|
std::ostringstream msg;
|
|
msg << "[scatter] Updates with shape " << updates.shape()
|
|
<< " are too large for array with shape " << a.shape() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
|
|
// Promote indices to the same type
|
|
auto dtype = result_type(indices);
|
|
if (!is_integral(dtype)) {
|
|
throw std::invalid_argument(
|
|
"[scatter] Got indices with invalid dtype. Indices must be integral.");
|
|
}
|
|
for (auto& idx : inputs) {
|
|
idx = astype(idx, dtype, s);
|
|
}
|
|
|
|
inputs.insert(inputs.begin(), a);
|
|
// TODO promote or cast?
|
|
inputs.push_back(astype(updates, a.dtype(), s));
|
|
return array(
|
|
a.shape(),
|
|
a.dtype(),
|
|
std::make_unique<Scatter>(to_stream(s), mode, axes),
|
|
inputs);
|
|
}
|
|
|
|
array scatter(
|
|
const array& a,
|
|
const std::vector<array>& indices,
|
|
const array& updates,
|
|
const std::vector<int>& axes,
|
|
StreamOrDevice s /*= {}*/) {
|
|
return scatter(a, indices, updates, axes, Scatter::None, s);
|
|
}
|
|
|
|
array scatter_add(
|
|
const array& a,
|
|
const std::vector<array>& indices,
|
|
const array& updates,
|
|
const std::vector<int>& axes,
|
|
StreamOrDevice s /*= {}*/) {
|
|
return scatter(a, indices, updates, axes, Scatter::Sum, s);
|
|
}
|
|
|
|
array scatter_prod(
|
|
const array& a,
|
|
const std::vector<array>& indices,
|
|
const array& updates,
|
|
const std::vector<int>& axes,
|
|
StreamOrDevice s /*= {}*/) {
|
|
return scatter(a, indices, updates, axes, Scatter::Prod, s);
|
|
}
|
|
|
|
array scatter_max(
|
|
const array& a,
|
|
const std::vector<array>& indices,
|
|
const array& updates,
|
|
const std::vector<int>& axes,
|
|
StreamOrDevice s /*= {}*/) {
|
|
return scatter(a, indices, updates, axes, Scatter::Max, s);
|
|
}
|
|
|
|
array scatter_min(
|
|
const array& a,
|
|
const std::vector<array>& indices,
|
|
const array& updates,
|
|
const std::vector<int>& axes,
|
|
StreamOrDevice s /*= {}*/) {
|
|
return scatter(a, indices, updates, axes, Scatter::Min, s);
|
|
}
|
|
|
|
array sqrt(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
return array(
|
|
a.shape(),
|
|
dtype,
|
|
std::make_unique<Sqrt>(to_stream(s)),
|
|
{astype(a, dtype, s)});
|
|
}
|
|
|
|
array rsqrt(const array& a, StreamOrDevice s /* = {} */) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
return array(
|
|
a.shape(),
|
|
dtype,
|
|
std::make_unique<Sqrt>(to_stream(s), true),
|
|
{astype(a, dtype, s)});
|
|
}
|
|
|
|
array softmax(
|
|
const array& a,
|
|
const std::vector<int>& axes,
|
|
StreamOrDevice s /* = {}*/) {
|
|
if (axes.size() == 1 && (a.ndim() == axes[0] + 1 || axes[0] == -1)) {
|
|
auto dtype = at_least_float(a.dtype());
|
|
return array(
|
|
a.shape(),
|
|
dtype,
|
|
std::make_unique<Softmax>(to_stream(s)),
|
|
{astype(a, dtype, s)});
|
|
} else {
|
|
auto a_max = stop_gradient(max(a, axes, /*keepdims = */ true, s), s);
|
|
auto ex = exp(subtract(a, a_max, s), s);
|
|
return divide(ex, sum(ex, axes, /*keepdims = */ true, s), s);
|
|
}
|
|
}
|
|
|
|
array softmax(const array& a, StreamOrDevice s /* = {}*/) {
|
|
std::vector<int> axes(a.ndim());
|
|
std::iota(axes.begin(), axes.end(), 0);
|
|
return softmax(a, axes, s);
|
|
}
|
|
|
|
array power(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
auto dtype = promote_types(a.dtype(), b.dtype());
|
|
std::vector<array> inputs = {astype(a, dtype, s), astype(b, dtype, s)};
|
|
if (a.shape() != b.shape()) {
|
|
inputs = broadcast_arrays(inputs, s);
|
|
}
|
|
return array(
|
|
inputs[0].shape(), dtype, std::make_unique<Power>(to_stream(s)), inputs);
|
|
}
|
|
|
|
array cumsum(
|
|
const array& a,
|
|
int axis,
|
|
bool reverse /* = false*/,
|
|
bool inclusive /* = true*/,
|
|
StreamOrDevice s /* = {}*/) {
|
|
int ndim = a.ndim();
|
|
if (axis >= ndim || axis < -ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[cumsum] Axis " << axis << " is out of bounds for array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
axis = (axis + a.ndim()) % a.ndim();
|
|
auto out_type = a.dtype() == bool_ ? int32 : a.dtype();
|
|
return array(
|
|
a.shape(),
|
|
out_type,
|
|
std::make_unique<Scan>(
|
|
to_stream(s), Scan::ReduceType::Sum, axis, reverse, inclusive),
|
|
{a});
|
|
}
|
|
|
|
array cumprod(
|
|
const array& a,
|
|
int axis,
|
|
bool reverse /* = false*/,
|
|
bool inclusive /* = true*/,
|
|
StreamOrDevice s /* = {}*/) {
|
|
int ndim = a.ndim();
|
|
if (axis >= ndim || axis < -ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[cumprod] Axis " << axis << " is out of bounds for array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
axis = (axis + a.ndim()) % a.ndim();
|
|
return array(
|
|
a.shape(),
|
|
a.dtype(),
|
|
std::make_unique<Scan>(
|
|
to_stream(s), Scan::ReduceType::Prod, axis, reverse, inclusive),
|
|
{a});
|
|
}
|
|
|
|
array cummax(
|
|
const array& a,
|
|
int axis,
|
|
bool reverse /* = false*/,
|
|
bool inclusive /* = true*/,
|
|
StreamOrDevice s /* = {}*/) {
|
|
int ndim = a.ndim();
|
|
if (axis >= ndim || axis < -ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[cummax] Axis " << axis << " is out of bounds for array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
axis = (axis + a.ndim()) % a.ndim();
|
|
return array(
|
|
a.shape(),
|
|
a.dtype(),
|
|
std::make_unique<Scan>(
|
|
to_stream(s), Scan::ReduceType::Max, axis, reverse, inclusive),
|
|
{a});
|
|
}
|
|
|
|
array cummin(
|
|
const array& a,
|
|
int axis,
|
|
bool reverse /* = false*/,
|
|
bool inclusive /* = true*/,
|
|
StreamOrDevice s /* = {}*/) {
|
|
int ndim = a.ndim();
|
|
if (axis >= ndim || axis < -ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[cummin] Axis " << axis << " is out of bounds for array with "
|
|
<< a.ndim() << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
axis = (axis + a.ndim()) % a.ndim();
|
|
return array(
|
|
a.shape(),
|
|
a.dtype(),
|
|
std::make_unique<Scan>(
|
|
to_stream(s), Scan::ReduceType::Min, axis, reverse, inclusive),
|
|
{a});
|
|
}
|
|
|
|
/** Convolution operations */
|
|
|
|
namespace {
|
|
|
|
// Conv helpers
|
|
inline int conv_out_axis_size(int in_dim, int wt_dim, int stride, int padding) {
|
|
return ((in_dim + padding - wt_dim) / stride) + 1;
|
|
}
|
|
|
|
// Conv helpers
|
|
inline int dilate_size(int dim, int dil) {
|
|
return 1 + dil * (dim - 1);
|
|
}
|
|
|
|
inline std::vector<int> conv_out_shape(
|
|
const std::vector<int>& in_shape,
|
|
const std::vector<int>& wt_shape,
|
|
const std::vector<int>& strides,
|
|
const std::vector<int>& pads_lo,
|
|
const std::vector<int>& pads_hi,
|
|
const std::vector<int>& kernel_dilation,
|
|
const std::vector<int>& input_dilation) {
|
|
int N = in_shape[0];
|
|
int O = wt_shape[0];
|
|
std::vector<int> out_shape(in_shape.size());
|
|
int i = 0;
|
|
out_shape[i++] = N;
|
|
|
|
int spatial_dims = in_shape.size() - 2;
|
|
|
|
if (strides.size() != spatial_dims) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Invalid strides " << strides << "for " << spatial_dims
|
|
<< "D convolution.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (pads_lo.size() != spatial_dims || pads_hi.size() != spatial_dims) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Invalid pading " << pads_lo << " | " << pads_hi << "for "
|
|
<< spatial_dims << "D convolution.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (kernel_dilation.size() != spatial_dims) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Invalid kernel dilation " << kernel_dilation << "for "
|
|
<< spatial_dims << "D convolution.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (input_dilation.size() != spatial_dims) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Invalid input dilation " << input_dilation << "for "
|
|
<< spatial_dims << "D convolution.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
for (; i < in_shape.size() - 1; i++) {
|
|
if (kernel_dilation[i - 1] <= 0) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Kernel dilation sizes must be positive."
|
|
<< " Got kernel dilation " << kernel_dilation << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (input_dilation[i - 1] <= 0) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Input dilation sizes must be positive."
|
|
<< " Got input dilation " << input_dilation << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (pads_lo[i - 1] < 0 || pads_hi[i - 1] < 0) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Padding sizes must be non-negative."
|
|
<< " Got padding " << pads_lo << " | " << pads_hi << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (strides[i - 1] <= 0) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Stride sizes must be positive."
|
|
<< " Got strides " << strides << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
int kd = dilate_size(wt_shape[i], kernel_dilation[i - 1]);
|
|
int id = dilate_size(in_shape[i], input_dilation[i - 1]);
|
|
|
|
out_shape[i] = conv_out_axis_size(
|
|
id, kd, strides[i - 1], pads_lo[i - 1] + pads_hi[i - 1]);
|
|
|
|
if (out_shape[i] <= 0) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Spatial dimensions of input after padding "
|
|
<< " cannot be smaller than weight spatial dimensions."
|
|
<< " Got error at axis " << i << " for input with shape " << in_shape
|
|
<< ", padding low " << pads_lo << ", padding high " << pads_hi
|
|
<< ", and weight of shape " << wt_shape << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
out_shape[i] = O;
|
|
|
|
return out_shape;
|
|
}
|
|
|
|
inline void run_conv_checks(const array& in, const array& wt, int n_dim) {
|
|
if (!is_floating_point(in.dtype()) && kindof(in.dtype()) != Dtype::Kind::c) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Invalid input array with type " << in.dtype() << "."
|
|
<< " Convolution currently only supports floating point types";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (in.ndim() != n_dim + 2) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Invalid input array with " << in.ndim() << " dimensions for "
|
|
<< n_dim << "D convolution."
|
|
<< " Expected an array with " << n_dim + 2
|
|
<< " dimensions following the format [N, ..., C_in].";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (wt.ndim() != n_dim + 2) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Invalid weight array with " << wt.ndim()
|
|
<< " dimensions for " << n_dim << "D convolution."
|
|
<< " Expected an array with " << n_dim + 2
|
|
<< " dimensions following the format [C_out, ..., C_in].";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (in.shape(n_dim + 1) != wt.shape(n_dim + 1)) {
|
|
std::ostringstream msg;
|
|
msg << "[conv] Expect the input channels in the input"
|
|
<< " and weight array to match but got shapes -"
|
|
<< " input: " << in.shape() << " and weight: " << wt.shape();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
/** 1D convolution with a filter */
|
|
array conv1d(
|
|
const array& in_,
|
|
const array& wt_,
|
|
int stride /* = 1 */,
|
|
int padding /* = 0 */,
|
|
int dilation /* = 1 */,
|
|
int groups /* = 1 */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return conv_general(
|
|
/* const array& input = */ in_,
|
|
/* const array& weight = */ wt_,
|
|
/* std::vector<int> stride = */ {stride},
|
|
/* std::vector<int> padding = */ {padding},
|
|
/* std::vector<int> kernel_dilation = */ {dilation},
|
|
/* std::vector<int> input_dilation = */ {1},
|
|
/* int groups = */ groups,
|
|
/* bool flip = */ false,
|
|
s);
|
|
}
|
|
|
|
/** 2D convolution with a filter */
|
|
array conv2d(
|
|
const array& in_,
|
|
const array& wt_,
|
|
const std::pair<int, int>& stride /* = {1, 1} */,
|
|
const std::pair<int, int>& padding /* = {0, 0} */,
|
|
const std::pair<int, int>& dilation /* = {1, 1} */,
|
|
int groups /* = 1 */,
|
|
StreamOrDevice s /* = {} */) {
|
|
return conv_general(
|
|
/* const array& input = */ in_,
|
|
/* const array& weight = */ wt_,
|
|
/* std::vector<int> stride = */ {stride.first, stride.second},
|
|
/* std::vector<int> padding = */ {padding.first, padding.second},
|
|
/* std::vector<int> kernel_dilation = */
|
|
{dilation.first, dilation.second},
|
|
/* std::vector<int> input_dilation = */ {1, 1},
|
|
/* int groups = */ groups,
|
|
/* bool flip = */ false,
|
|
s);
|
|
}
|
|
|
|
/** General convolution with a filter */
|
|
array conv_general(
|
|
array in,
|
|
array wt,
|
|
std::vector<int> stride /* = {} */,
|
|
std::vector<int> padding_lo /* = {} */,
|
|
std::vector<int> padding_hi /* = {} */,
|
|
std::vector<int> kernel_dilation /* = {} */,
|
|
std::vector<int> input_dilation /* = {} */,
|
|
int groups /* = 1 */,
|
|
bool flip /* = false */,
|
|
StreamOrDevice s /* = {} */) {
|
|
// Run checks
|
|
if (groups != 1) {
|
|
throw std::invalid_argument("[conv] Cannot handle groups != 1 yet");
|
|
}
|
|
|
|
int spatial_dims = in.ndim() - 2;
|
|
|
|
if (spatial_dims < 1 || spatial_dims > 2) {
|
|
throw std::invalid_argument(
|
|
"[conv] Can only work with inputs that have 1 or 2 spatial dimensions."
|
|
" The inputs must be in the format [N, ..., C_in]");
|
|
}
|
|
|
|
// Run checks
|
|
run_conv_checks(in, wt, spatial_dims);
|
|
|
|
// Type promotion
|
|
auto out_type = promote_types(in.dtype(), wt.dtype());
|
|
in = astype(in, out_type, s);
|
|
wt = astype(wt, out_type, s);
|
|
|
|
if (stride.size() <= 1) {
|
|
int stride_int = stride.size() ? stride[0] : 1;
|
|
stride = std::vector<int>(spatial_dims, stride_int);
|
|
}
|
|
|
|
if (padding_lo.size() <= 1) {
|
|
int padding_int = padding_lo.size() ? padding_lo[0] : 0;
|
|
padding_lo = std::vector<int>(spatial_dims, padding_int);
|
|
}
|
|
|
|
if (padding_hi.size() <= 1) {
|
|
int padding_int = padding_hi.size() ? padding_hi[0] : 0;
|
|
padding_hi = std::vector<int>(spatial_dims, padding_int);
|
|
}
|
|
|
|
if (kernel_dilation.size() <= 1) {
|
|
int kernel_dilation_int = kernel_dilation.size() ? kernel_dilation[0] : 1;
|
|
kernel_dilation = std::vector<int>(spatial_dims, kernel_dilation_int);
|
|
}
|
|
|
|
if (input_dilation.size() <= 1) {
|
|
int input_dilation_int = input_dilation.size() ? input_dilation[0] : 1;
|
|
input_dilation = std::vector<int>(spatial_dims, input_dilation_int);
|
|
}
|
|
|
|
// Get output shapes
|
|
std::vector<int> out_shape = conv_out_shape(
|
|
in.shape(),
|
|
wt.shape(),
|
|
stride,
|
|
padding_lo,
|
|
padding_hi,
|
|
kernel_dilation,
|
|
input_dilation);
|
|
|
|
return array(
|
|
out_shape,
|
|
in.dtype(),
|
|
std::make_unique<Convolution>(
|
|
to_stream(s),
|
|
stride,
|
|
padding_lo,
|
|
kernel_dilation,
|
|
input_dilation,
|
|
groups,
|
|
flip),
|
|
{in, wt});
|
|
}
|
|
|
|
array quantized_matmul(
|
|
const array& in_x,
|
|
const array& w,
|
|
const array& scales,
|
|
const array& biases,
|
|
bool transpose /* = true */,
|
|
int group_size /* = 64 */,
|
|
int bits /* = 4 */,
|
|
StreamOrDevice s /* = {} */) {
|
|
array x = in_x;
|
|
|
|
if (w.dtype() != uint32) {
|
|
std::ostringstream msg;
|
|
msg << "[quantized_matmul] The weight matrix should be uint32 "
|
|
<< "but received" << w.dtype();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (w.ndim() != 2) {
|
|
std::ostringstream msg;
|
|
msg << "[quantized_matmul] Batched quantized matmul is not supported for now "
|
|
<< "received w with shape " << w.shape();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// Keep x's batch dimensions to reshape it back after the matmul
|
|
auto original_shape = x.shape();
|
|
int x_inner_dims = original_shape.back();
|
|
original_shape.pop_back();
|
|
|
|
// Reshape x into a matrix if it isn't already one
|
|
if (x.ndim() != 2) {
|
|
x = reshape(x, {-1, x_inner_dims}, s);
|
|
}
|
|
|
|
if (scales.ndim() != 2 || scales.shape() != biases.shape()) {
|
|
std::ostringstream msg;
|
|
msg << "[quantized_matmul] Scales and biases should have the same 2D shape. "
|
|
<< "Received scales with shape " << scales.shape()
|
|
<< " and biases with " << biases.shape();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (w.shape(1) * 32 / bits != scales.shape(1) * group_size) {
|
|
std::ostringstream msg;
|
|
msg << "[quantized_matmul] The shapes of the weight and scales are "
|
|
<< "incompatible based on bits and group_size. w.shape() == "
|
|
<< w.shape() << " and scales.shape() == " << scales.shape()
|
|
<< " with group_size=" << group_size << " and bits=" << bits;
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// Calculate the expanded w's dims
|
|
int w_inner_dims = (transpose) ? w.shape(1) * 32 / bits : w.shape(0);
|
|
int w_outer_dims = (transpose) ? w.shape(0) : w.shape(1) * 32 / bits;
|
|
|
|
if (w_inner_dims != x_inner_dims) {
|
|
std::ostringstream msg;
|
|
msg << "[quantized_matmul] Last dimension of first input with "
|
|
<< "shape (..., " << x_inner_dims << ") does not match "
|
|
<< "the expanded quantized matrix (" << w_inner_dims << ", "
|
|
<< w_outer_dims << ") computed from shape " << w.shape()
|
|
<< " with group_size=" << group_size << ", bits=" << bits
|
|
<< " and transpose=" << std::boolalpha << transpose;
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
auto dtype = result_type({x, scales, biases});
|
|
if (!is_floating_point(dtype) || is_complex(dtype)) {
|
|
std::ostringstream msg;
|
|
msg << "[quantized_matmul] Only real floating types are supported but "
|
|
<< "the passed types where x.dtype() == " << x.dtype()
|
|
<< ", scales.dtype() == " << scales.dtype()
|
|
<< " and biases.dtype() == " << biases.dtype();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
auto out = array(
|
|
{x.shape(0), w_outer_dims},
|
|
dtype,
|
|
std::make_unique<QuantizedMatmul>(
|
|
to_stream(s), group_size, bits, transpose),
|
|
{astype(x, dtype, s),
|
|
w,
|
|
astype(scales, dtype, s),
|
|
astype(biases, dtype, s)});
|
|
|
|
// If needed reshape x to the original batch shape
|
|
if (original_shape.size() != 1) {
|
|
original_shape.push_back(w_outer_dims);
|
|
out = reshape(out, original_shape, s);
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
std::tuple<array, array, array> quantize(
|
|
const array& w,
|
|
int group_size /* = 64 */,
|
|
int bits /* = 4 */,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (group_size != 32 && group_size != 64 && group_size != 128) {
|
|
std::ostringstream msg;
|
|
msg << "[quantize] The requested group size " << group_size
|
|
<< " is not supported. The supported group sizes are 64 and 128.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (bits != 2 && bits != 4 && bits != 8) {
|
|
std::ostringstream msg;
|
|
msg << "[quantize] The requested number of bits " << bits
|
|
<< " is not supported. The supported bits are 2, 4 and 8.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
if (w.ndim() != 2) {
|
|
throw std::invalid_argument("[quantize] Only matrices supported for now");
|
|
}
|
|
|
|
if ((w.shape(1) % group_size) != 0) {
|
|
std::ostringstream msg;
|
|
msg << "[quantize] The last dimension of the matrix needs to be divisible by "
|
|
<< "the quantization group size " << group_size
|
|
<< ". However the provided "
|
|
<< " matrix has shape " << w.shape();
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// Compute some constants used for the quantization
|
|
int n_bins = (1 << bits) - 1; // 2**bits - 1
|
|
int el_per_int = 32 / bits;
|
|
array shifts = power(array(2, uint32), arange(0, 32, bits, uint32, s), s);
|
|
shifts = reshape(shifts, {1, 1, -1}, s);
|
|
|
|
// Check that the w matrix will fill up a whole SIMD.
|
|
// This is an implementation detail which should be removed in the future but
|
|
// at least we bail out early which will result in a nice readable error.
|
|
//
|
|
// Hopefully nobody is quantizing matrices that small anyway.
|
|
if (w.shape(1) < 32 * el_per_int) {
|
|
std::ostringstream msg;
|
|
msg << "[quantize] The feature dimension (2nd dimension of the matrix) is "
|
|
<< "too small for quantization. We support >=512 for 2 bits, "
|
|
<< ">= 256 for 4 bits and >= 128 for 8 bits. The provided matrix has "
|
|
<< "shape " << w.shape() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// Compute scales and biases
|
|
array packed_w =
|
|
reshape(w, {w.shape(0), w.shape(1) / group_size, group_size}, s);
|
|
array w_max = max(packed_w, /* axis= */ -1, /* keepdims= */ true, s);
|
|
array w_min = min(packed_w, /* axis= */ -1, /* keepdims= */ true, s);
|
|
array delta = divide(subtract(w_max, w_min, s), array(n_bins, w.dtype()), s);
|
|
array scales = squeeze(delta, -1, s);
|
|
array biases = squeeze(w_min, -1, s);
|
|
|
|
// Quantize and pack w
|
|
packed_w =
|
|
astype(round(divide(subtract(packed_w, w_min, s), delta, s), s), uint32);
|
|
packed_w = reshape(packed_w, {w.shape(0), -1, el_per_int}, s);
|
|
packed_w = sum(
|
|
multiply(packed_w, shifts, s), /* axis= */ 2, /* keepdims= */ false, s);
|
|
|
|
return std::make_tuple(packed_w, scales, biases);
|
|
}
|
|
|
|
array dequantize(
|
|
const array& w,
|
|
const array& scales,
|
|
const array& biases,
|
|
int group_size /* = 64 */,
|
|
int bits /* = 4 */,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (bits <= 0) {
|
|
std::ostringstream msg;
|
|
msg << "[dequantize] Invalid value for bits: " << bits;
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (group_size <= 0) {
|
|
std::ostringstream msg;
|
|
msg << "[dequantize] Invalid value for group_size: " << group_size;
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
if (w.ndim() != 2 || scales.ndim() != 2 || biases.ndim() != 2) {
|
|
throw std::invalid_argument("[dequantize] Only matrices supported for now");
|
|
}
|
|
|
|
if (w.shape(0) != scales.shape(0) || w.shape(0) != biases.shape(0)) {
|
|
throw std::invalid_argument(
|
|
"[dequantize] Shape of scales and biases does not match the matrix");
|
|
}
|
|
|
|
if (w.dtype() != uint32) {
|
|
throw std::invalid_argument(
|
|
"[dequantize] The matrix should be given as a uint32");
|
|
}
|
|
|
|
// Compute some constants for the dequantization
|
|
int el_per_int = 32 / bits;
|
|
|
|
if (w.shape(1) * el_per_int != scales.shape(1) * group_size) {
|
|
std::ostringstream msg;
|
|
msg << "[dequantize] Shape of scales and biases does not match the matrix "
|
|
<< "given the quantization parameters. Provided matrix of shape "
|
|
<< w.shape() << " and scales/biases of shape " << scales.shape()
|
|
<< " with group_size=" << group_size << " and bits=" << bits << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// Extract the pieces from the passed quantized matrix
|
|
std::vector<array> parts;
|
|
for (int start = 0; start < 32; start += bits) {
|
|
// TODO: Implement bitwise operators for integral types
|
|
int shift_left = 32 - (start + bits);
|
|
int shift_right = shift_left + start;
|
|
array p = multiply(w, array(1 << shift_left, uint32), s);
|
|
p = floor_divide(p, array(1 << shift_right, uint32), s);
|
|
p = expand_dims(p, -1, s);
|
|
parts.push_back(p);
|
|
}
|
|
array w_full = concatenate(parts, -1, s);
|
|
|
|
// Dequantize
|
|
w_full = reshape(w_full, {w.shape(0), -1, group_size}, s);
|
|
w_full = multiply(w_full, expand_dims(scales, -1, s), s);
|
|
w_full = add(w_full, expand_dims(biases, -1, s), s);
|
|
w_full = reshape(w_full, {w.shape(0), -1}, s);
|
|
|
|
return w_full;
|
|
}
|
|
|
|
array tensordot(
|
|
const array& a,
|
|
const array& b,
|
|
const int axis /* = 2 */,
|
|
StreamOrDevice s /* = {} */
|
|
) {
|
|
if (axis < 0) {
|
|
throw std::invalid_argument(
|
|
"[tensordot] axis must be greater or equal to 0.");
|
|
}
|
|
if (axis > std::min(a.ndim(), b.ndim())) {
|
|
throw std::invalid_argument(
|
|
"[tensordot] axis must be less than the number of dimensions of a and b.");
|
|
}
|
|
std::vector<int> adims;
|
|
std::vector<int> bdims;
|
|
for (int i = 0; i < axis; i++) {
|
|
bdims.emplace_back(i);
|
|
adims.emplace_back(i - axis);
|
|
}
|
|
return tensordot(a, b, {adims}, {bdims}, s);
|
|
}
|
|
|
|
array tensordot(
|
|
const array& a,
|
|
const array& b,
|
|
const std::vector<int>& axes_a,
|
|
const std::vector<int>& axes_b,
|
|
StreamOrDevice s /* = {} */) {
|
|
if (axes_a.size() != axes_b.size()) {
|
|
throw std::invalid_argument("[tensordot] axes must have the same size.");
|
|
}
|
|
int csize = 1;
|
|
auto x = a;
|
|
auto y = b;
|
|
for (int i = 0; i < axes_a.size(); i++) {
|
|
if (x.shape(axes_a.at(i)) == y.shape(axes_b.at(i))) {
|
|
csize *= x.shape(axes_a.at(i));
|
|
} else {
|
|
throw std::invalid_argument(
|
|
"[tensordot] a and b must have the same shape on the contracted axes.");
|
|
}
|
|
}
|
|
|
|
std::vector<bool> cdims1(x.ndim(), false);
|
|
std::vector<bool> cdims2(y.ndim(), false);
|
|
for (const auto n : axes_a) {
|
|
int n_ = (n < 0) ? n + x.ndim() : n;
|
|
cdims1[n_] = true;
|
|
}
|
|
for (const auto n : axes_b) {
|
|
int n_ = (n < 0) ? n + y.ndim() : n;
|
|
cdims2[n_] = true;
|
|
}
|
|
|
|
std::vector<int> t1;
|
|
std::vector<int> t2;
|
|
std::vector<int> rshape;
|
|
int size1 = 1;
|
|
int size2 = 1;
|
|
for (int i = 0; i < a.ndim(); i++) {
|
|
if (!cdims1[i]) {
|
|
t1.emplace_back(i);
|
|
size1 *= a.shape(i);
|
|
rshape.emplace_back(a.shape(i));
|
|
}
|
|
}
|
|
for (const auto x : axes_a) {
|
|
t1.emplace_back(x);
|
|
}
|
|
for (const auto x : axes_b) {
|
|
t2.emplace_back(x);
|
|
}
|
|
for (int i = 0; i < b.ndim(); i++) {
|
|
if (!cdims2[i]) {
|
|
t2.emplace_back(i);
|
|
size2 *= b.shape(i);
|
|
rshape.emplace_back(b.shape(i));
|
|
}
|
|
}
|
|
x = reshape(transpose(x, t1, s), {size1, csize}, s);
|
|
y = reshape(transpose(y, t2, s), {csize, size2}, s);
|
|
return reshape(matmul(x, y, s), rshape, s);
|
|
}
|
|
|
|
array outer(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
return multiply(
|
|
reshape(a, {static_cast<int>(a.size()), 1}, s), flatten(b, s), s);
|
|
}
|
|
|
|
array inner(const array& a, const array& b, StreamOrDevice s /* = {} */) {
|
|
if (a.ndim() == 0 || b.ndim() == 0) {
|
|
return multiply(a, b, s);
|
|
}
|
|
if (a.shape(-1) != b.shape(-1)) {
|
|
throw std::invalid_argument(
|
|
"[inner] a and b must have the same last dimension.");
|
|
}
|
|
|
|
return tensordot(a, b, {-1}, {-1}, s);
|
|
}
|
|
|
|
/** Compute D = beta * C + alpha * (A @ B) */
|
|
array addmm(
|
|
array c,
|
|
array a,
|
|
array b,
|
|
const float& alpha /* = 1.f */,
|
|
const float& beta /* = 1.f */,
|
|
StreamOrDevice s /* = {} */) {
|
|
// Divert in the case of vector-matrix multiplication
|
|
// TODO: Add the needed specializtion
|
|
if (a.ndim() == 1 || b.ndim() == 1) {
|
|
array X = matmul(a, b, s);
|
|
array alpha_arr = array(alpha, X.dtype());
|
|
array aX = multiply(alpha_arr, X, s);
|
|
|
|
array beta_arr = array(beta, c.dtype());
|
|
array bY = multiply(beta_arr, c, s);
|
|
return add(aX, bY, s);
|
|
}
|
|
|
|
if (a.ndim() == 0 || b.ndim() == 0) {
|
|
throw std::invalid_argument(
|
|
"[addmm] Got 0 dimension input. Inputs must "
|
|
"have at least one dimension.");
|
|
}
|
|
|
|
if (a.shape(-1) != b.shape(-2)) {
|
|
std::ostringstream msg;
|
|
msg << "[addmm] Last dimension of first input with shape " << a.shape()
|
|
<< " must match second to last dimension of"
|
|
<< " second input with shape " << b.shape() << ".";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
// Type promotion
|
|
auto out_type = result_type({a, b, c});
|
|
if (!is_floating_point(out_type) || is_complex(out_type)) {
|
|
std::ostringstream msg;
|
|
msg << "[addmm] Only real floating point types are supported but "
|
|
<< c.dtype() << ", " << a.dtype() << " and " << b.dtype()
|
|
<< " were provided which results in " << out_type
|
|
<< ", which is not a real floating point type.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
a = astype(a, out_type, s);
|
|
b = astype(b, out_type, s);
|
|
c = astype(c, out_type, s);
|
|
|
|
// We can batch the multiplication by reshaping a
|
|
if (a.ndim() > 2 && b.ndim() == 2 && c.ndim() <= 1) {
|
|
std::vector<int> out_shape = a.shape();
|
|
a = reshape(a, {-1, out_shape.back()}, s);
|
|
out_shape.back() = b.shape(-1);
|
|
c = broadcast_to(c, {a.shape(0), b.shape(1)}, s);
|
|
auto out = array(
|
|
{a.shape(0), b.shape(1)},
|
|
out_type,
|
|
std::make_unique<AddMM>(to_stream(s), alpha, beta),
|
|
{a, b, c});
|
|
return reshape(out, out_shape, s);
|
|
}
|
|
|
|
if (a.ndim() > 2 || b.ndim() > 2) {
|
|
std::vector<int> bsx_a(a.shape().begin(), a.shape().end() - 2);
|
|
std::vector<int> bsx_b(b.shape().begin(), b.shape().end() - 2);
|
|
auto inner_shape = broadcast_shapes(bsx_a, bsx_b);
|
|
|
|
// Broadcast a
|
|
inner_shape.push_back(a.shape(-2));
|
|
inner_shape.push_back(a.shape(-1));
|
|
a = broadcast_to(a, inner_shape, s);
|
|
|
|
// Broadcast b
|
|
*(inner_shape.end() - 2) = b.shape(-2);
|
|
*(inner_shape.end() - 1) = b.shape(-1);
|
|
b = broadcast_to(b, inner_shape, s);
|
|
}
|
|
|
|
auto out_shape = a.shape();
|
|
out_shape.back() = b.shape(-1);
|
|
|
|
auto c_broadcast_shape = broadcast_shapes(c.shape(), out_shape);
|
|
c = broadcast_to(c, c_broadcast_shape, s);
|
|
|
|
auto out = array(
|
|
out_shape,
|
|
out_type,
|
|
std::make_unique<AddMM>(to_stream(s), alpha, beta),
|
|
{a, b, c});
|
|
|
|
return out;
|
|
}
|
|
|
|
array diagonal(
|
|
const array& a,
|
|
int offset /* = 0 */,
|
|
int axis1 /* = 0 */,
|
|
int axis2 /* = 1 */,
|
|
StreamOrDevice s /* = {} */
|
|
) {
|
|
int ndim = a.ndim();
|
|
if (ndim < 2) {
|
|
std::ostringstream msg;
|
|
msg << "[diagonal] Array must have at least two dimensions, but got "
|
|
<< ndim << " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
|
|
auto ax1 = (axis1 < 0) ? axis1 + ndim : axis1;
|
|
if (ax1 < 0 || ax1 >= ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[diagonal] Invalid axis1 " << axis1 << " for array with " << ndim
|
|
<< " dimensions.";
|
|
throw std::out_of_range(msg.str());
|
|
}
|
|
|
|
auto ax2 = (axis2 < 0) ? axis2 + ndim : axis2;
|
|
if (ax2 < 0 || ax2 >= ndim) {
|
|
std::ostringstream msg;
|
|
msg << "[diagonal] Invalid axis2 " << axis2 << " for array with " << ndim
|
|
<< " dimensions.";
|
|
throw std::out_of_range(msg.str());
|
|
}
|
|
|
|
if (ax1 == ax2) {
|
|
throw std::invalid_argument(
|
|
"[diagonal] axis1 and axis2 cannot be the same axis");
|
|
}
|
|
|
|
auto off1 = std::max(-offset, 0);
|
|
auto off2 = std::max(offset, 0);
|
|
|
|
auto diag_size = std::min(a.shape(ax1) - off1, a.shape(ax2) - off2);
|
|
diag_size = std::max(diag_size, 0);
|
|
|
|
std::vector<array> indices = {
|
|
arange(off1, off1 + diag_size, s), arange(off2, off2 + diag_size, s)};
|
|
|
|
std::vector<int> slice_sizes = a.shape();
|
|
slice_sizes[ax1] = 1;
|
|
slice_sizes[ax2] = 1;
|
|
|
|
auto out = gather(a, indices, {ax1, ax2}, slice_sizes, s);
|
|
return moveaxis(squeeze(out, {ax1 + 1, ax2 + 1}, s), 0, -1, s);
|
|
}
|
|
|
|
array diag(const array& a, int k /* = 0 */, StreamOrDevice s /* = {} */) {
|
|
if (a.ndim() == 1) {
|
|
int a_size = a.size();
|
|
int n = a_size + std::abs(k);
|
|
auto res = zeros({n, n}, a.dtype(), s);
|
|
|
|
std::vector<array> indices;
|
|
auto s1 = std::max(0, -k);
|
|
auto s2 = std::max(0, k);
|
|
indices.push_back(arange(s1, a_size + s1, uint32, s));
|
|
indices.push_back(arange(s2, a_size + s2, uint32, s));
|
|
|
|
return scatter(res, indices, reshape(a, {a_size, 1, 1}, s), {0, 1}, s);
|
|
} else if (a.ndim() == 2) {
|
|
return diagonal(a, k, 0, 1, s);
|
|
} else {
|
|
std::ostringstream msg;
|
|
msg << "[diag] array must be 1-D or 2-D, got array with " << a.ndim()
|
|
<< " dimensions.";
|
|
throw std::invalid_argument(msg.str());
|
|
}
|
|
}
|
|
|
|
std::vector<array> depends(
|
|
const std::vector<array>& inputs,
|
|
const std::vector<array>& dependencies) {
|
|
std::vector<array> all_inputs = inputs;
|
|
all_inputs.insert(all_inputs.end(), dependencies.begin(), dependencies.end());
|
|
|
|
// Compute the stream. Maybe do it in a smarter way at some point in the
|
|
// future.
|
|
Stream s = (inputs[0].has_primitive()) ? inputs[0].primitive().stream()
|
|
: to_stream({});
|
|
// Make the output info
|
|
std::vector<std::vector<int>> shapes;
|
|
std::vector<Dtype> dtypes;
|
|
for (const auto& in : inputs) {
|
|
shapes.emplace_back(in.shape());
|
|
dtypes.emplace_back(in.dtype());
|
|
}
|
|
|
|
return array::make_arrays(
|
|
shapes, dtypes, std::make_shared<Depends>(to_stream(s)), all_inputs);
|
|
}
|
|
|
|
array atleast_1d(const array& a, StreamOrDevice s /* = {} */) {
|
|
if (a.ndim() == 0) {
|
|
return reshape(a, {1}, s);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
std::vector<array> atleast_1d(
|
|
const std::vector<array>& arrays,
|
|
StreamOrDevice s /* = {} */) {
|
|
std::vector<array> out;
|
|
out.reserve(arrays.size());
|
|
for (const auto& a : arrays) {
|
|
out.push_back(atleast_1d(a, s));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array atleast_2d(const array& a, StreamOrDevice s /* = {} */) {
|
|
switch (a.ndim()) {
|
|
case 0:
|
|
return reshape(a, {1, 1}, s);
|
|
case 1:
|
|
return reshape(a, {1, static_cast<int>(a.size())}, s);
|
|
default:
|
|
return a;
|
|
}
|
|
}
|
|
|
|
std::vector<array> atleast_2d(
|
|
const std::vector<array>& arrays,
|
|
StreamOrDevice s /* = {} */) {
|
|
std::vector<array> out;
|
|
out.reserve(arrays.size());
|
|
for (const auto& a : arrays) {
|
|
out.push_back(atleast_2d(a, s));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
array atleast_3d(const array& a, StreamOrDevice s /* = {} */) {
|
|
switch (a.ndim()) {
|
|
case 0:
|
|
return reshape(a, {1, 1, 1}, s);
|
|
case 1:
|
|
return reshape(a, {1, static_cast<int>(a.size()), 1}, s);
|
|
case 2:
|
|
return reshape(a, {a.shape(0), a.shape(1), 1}, s);
|
|
default:
|
|
return a;
|
|
}
|
|
}
|
|
|
|
std::vector<array> atleast_3d(
|
|
const std::vector<array>& arrays,
|
|
StreamOrDevice s /* = {} */) {
|
|
std::vector<array> out;
|
|
out.reserve(arrays.size());
|
|
for (const auto& a : arrays) {
|
|
out.push_back(atleast_3d(a, s));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
} // namespace mlx::core
|