mlx/mlx/backend/metal/quantized.cpp
Awni Hannun e425dc00c0
Faster small batch qmv (#1861)
* faster small batch qmv

* swap batch and block dims for qvm and qmv regular
2025-02-12 22:02:36 -08:00

474 lines
15 KiB
C++

// Copyright © 2023-2024 Apple Inc.
#include <cassert>
#include "mlx/backend/common/compiled.h"
#include "mlx/backend/metal/copy.h"
#include "mlx/backend/metal/device.h"
#include "mlx/backend/metal/kernels.h"
#include "mlx/backend/metal/reduce.h"
#include "mlx/backend/metal/utils.h"
#include "mlx/fast_primitives.h"
#include "mlx/primitives.h"
#include "mlx/utils.h"
namespace mlx::core {
void launch_qmm(
std::string name,
const std::vector<array>& inputs,
array& out,
int group_size,
int bits,
int D,
int O,
int B,
int N,
MTL::Size& group_dims,
MTL::Size& grid_dims,
bool batched,
bool matrix,
bool gather,
bool aligned,
bool quad,
const Stream& s) {
auto& x_pre = inputs[0];
auto& w_pre = inputs[1];
auto& scales_pre = inputs[2];
auto& biases_pre = inputs[3];
// Ensure that the last two dims are row contiguous.
// TODO: Check if we really need this for x as well...
std::vector<array> copies;
auto ensure_row_contiguous_last_dims = [&copies, &s](const array& arr) {
auto stride_0 = arr.strides()[arr.ndim() - 2];
auto stride_1 = arr.strides()[arr.ndim() - 1];
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
return arr;
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
return arr_copy;
}
};
auto x = ensure_row_contiguous_last_dims(x_pre);
auto w = ensure_row_contiguous_last_dims(w_pre);
auto scales = ensure_row_contiguous_last_dims(scales_pre);
auto biases = ensure_row_contiguous_last_dims(biases_pre);
int x_batch_ndims = x.ndim() - 2;
auto& x_shape = x.shape();
auto& x_strides = x.strides();
int w_batch_ndims = w.ndim() - 2;
auto& w_shape = w.shape();
auto& w_strides = w.strides();
auto& s_strides = scales.strides();
auto& b_strides = biases.strides();
std::string aligned_n = (O % 32) == 0 ? "true" : "false";
std::ostringstream kname;
auto type_string = get_type_string(x.dtype());
kname << name << "_" << type_string << "_gs_" << group_size << "_b_" << bits;
if (quad) {
kname << "_d_" << D;
}
if (aligned) {
kname << "_alN_" << aligned_n;
}
if (!gather) {
kname << "_batch_" << batched;
}
// Encode and dispatch kernel
std::string template_def;
if (quad) {
template_def = get_template_definition(
kname.str(), name, type_string, group_size, bits, D, batched);
} else if (aligned && !gather) {
template_def = get_template_definition(
kname.str(), name, type_string, group_size, bits, aligned_n, batched);
} else if (!gather && !aligned) {
template_def = get_template_definition(
kname.str(), name, type_string, group_size, bits, batched);
} else if (aligned && gather) {
template_def = get_template_definition(
kname.str(), name, type_string, group_size, bits, aligned_n);
} else {
template_def = get_template_definition(
kname.str(), name, type_string, group_size, bits);
}
auto& d = metal::device(s.device);
auto kernel = get_quantized_kernel(d, kname.str(), template_def);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(w, 0);
compute_encoder.set_input_array(scales, 1);
compute_encoder.set_input_array(biases, 2);
compute_encoder.set_input_array(x, 3);
compute_encoder.set_output_array(out, 4);
compute_encoder.set_bytes(D, 5);
compute_encoder.set_bytes(O, 6);
int offset = 7;
if (matrix) {
compute_encoder.set_bytes(B, 7);
offset += 1;
}
if (batched || gather) {
compute_encoder.set_bytes(x_batch_ndims, offset);
compute_encoder.set_vector_bytes(x_shape, offset + 1);
compute_encoder.set_vector_bytes(x_strides, offset + 2);
compute_encoder.set_bytes(w_batch_ndims, offset + 3);
compute_encoder.set_vector_bytes(w_shape, offset + 4);
compute_encoder.set_vector_bytes(w_strides, offset + 5);
compute_encoder.set_vector_bytes(s_strides, offset + 6);
compute_encoder.set_vector_bytes(b_strides, offset + 7);
}
if (gather) {
auto& lhs_indices = inputs[4];
auto& rhs_indices = inputs[5];
// TODO: collapse batch dims
auto& batch_shape = lhs_indices.shape();
int batch_ndims = batch_shape.size();
auto& lhs_strides = lhs_indices.strides();
auto& rhs_strides = rhs_indices.strides();
compute_encoder.set_bytes(batch_ndims, offset + 8);
compute_encoder.set_vector_bytes(batch_shape, offset + 9);
compute_encoder.set_input_array(lhs_indices, offset + 10);
compute_encoder.set_input_array(rhs_indices, offset + 11);
compute_encoder.set_vector_bytes(lhs_strides, offset + 12);
compute_encoder.set_vector_bytes(rhs_strides, offset + 13);
}
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
d.add_temporaries(std::move(copies), s.index);
}
void qvm_split_k(
const std::vector<array>& inputs,
array& out,
int group_size,
int bits,
int D,
int O,
int B,
int N,
const Stream& s) {
int split_k = D > 8192 ? 32 : 8;
int split_D = (D + split_k - 1) / split_k;
N *= split_k;
int bo = 64;
int bd = 32;
MTL::Size group_dims = MTL::Size(bd, 2, 1);
MTL::Size grid_dims = MTL::Size(B, O / bo, N);
auto& x_pre = inputs[0];
auto& w_pre = inputs[1];
auto& scales_pre = inputs[2];
auto& biases_pre = inputs[3];
// Ensure that the last two dims are row contiguous.
// TODO: Check if we really need this for x as well...
std::vector<array> copies;
auto ensure_row_contiguous_last_dims = [&copies, &s](const array& arr) {
auto stride_0 = arr.strides()[arr.ndim() - 2];
auto stride_1 = arr.strides()[arr.ndim() - 1];
if (stride_0 == arr.shape(-1) && stride_1 == 1) {
return arr;
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
return arr_copy;
}
};
auto x = ensure_row_contiguous_last_dims(x_pre);
auto w = ensure_row_contiguous_last_dims(w_pre);
auto scales = ensure_row_contiguous_last_dims(scales_pre);
auto biases = ensure_row_contiguous_last_dims(biases_pre);
int x_batch_ndims = x.ndim() - 2;
auto x_shape = x.shape();
auto x_strides = x.strides();
int w_batch_ndims = w.ndim() - 2;
auto w_shape = w.shape();
auto w_strides = w.strides();
auto s_strides = scales.strides();
auto b_strides = biases.strides();
// Add split_k dim with reshapes
x_shape.insert(x_shape.end() - 2, split_k);
x_shape.back() /= split_k;
x_strides.insert(x_strides.end() - 2, split_D);
x_strides[x.ndim() - 1] = split_D;
x_batch_ndims += 1;
w_shape.insert(w_shape.end() - 2, split_k);
w_shape[w.ndim() - 1] /= split_k;
w_strides.insert(w_strides.end() - 2, split_D * w.shape(-1));
w_batch_ndims += 1;
s_strides.insert(s_strides.end() - 2, split_D * scales.shape(-1));
b_strides.insert(b_strides.end() - 2, split_D * biases.shape(-1));
int final_block_size = D - (split_k - 1) * split_D;
auto& d = metal::device(s.device);
auto temp_shape = out.shape();
temp_shape.insert(temp_shape.end() - 2, split_k);
array intermediate(temp_shape, x.dtype(), nullptr, {});
intermediate.set_data(allocator::malloc_or_wait(intermediate.nbytes()));
d.add_temporary(intermediate, s.index);
std::ostringstream kname;
auto type_string = get_type_string(x.dtype());
kname << "qvm_split_k" << "_" << type_string << "_gs_" << group_size << "_b_"
<< bits << "_spk_" << split_k;
auto template_def = get_template_definition(
kname.str(), "qvm_split_k", type_string, group_size, bits, split_k);
// Encode and dispatch kernel
auto kernel = get_quantized_kernel(d, kname.str(), template_def);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
compute_encoder.set_input_array(w, 0);
compute_encoder.set_input_array(scales, 1);
compute_encoder.set_input_array(biases, 2);
compute_encoder.set_input_array(x, 3);
compute_encoder.set_output_array(intermediate, 4);
compute_encoder.set_bytes(split_D, 5);
compute_encoder.set_bytes(O, 6);
compute_encoder.set_bytes(x_batch_ndims, 7);
compute_encoder.set_vector_bytes(x_shape, 8);
compute_encoder.set_vector_bytes(x_strides, 9);
compute_encoder.set_bytes(w_batch_ndims, 10);
compute_encoder.set_vector_bytes(w_shape, 11);
compute_encoder.set_vector_bytes(w_strides, 12);
compute_encoder.set_vector_bytes(s_strides, 13);
compute_encoder.set_vector_bytes(b_strides, 14);
compute_encoder.set_bytes(final_block_size, 15);
compute_encoder.dispatch_threadgroups(grid_dims, group_dims);
d.add_temporaries(std::move(copies), s.index);
int axis = intermediate.ndim() - 3;
ReductionPlan plan(
ReductionOpType::ContiguousStridedReduce,
{intermediate.shape(axis)},
{intermediate.strides(axis)});
strided_reduce_general_dispatch(
intermediate, out, "sum", plan, {axis}, compute_encoder, d, s);
}
void qmm_op(
const std::vector<array>& inputs,
array& out,
bool transpose,
int group_size,
int bits,
bool gather,
const Stream& s) {
out.set_data(allocator::malloc_or_wait(out.nbytes()));
MTL::Size group_dims;
MTL::Size grid_dims;
auto& x = inputs[0];
auto& w = inputs[1];
bool batched = !gather && (w.ndim() > 2 || !x.flags().row_contiguous);
int D = x.shape(-1);
int O = out.shape(-1);
// For the unbatched W case, avoid `adjust_matrix_offsets`
// for a small performance gain.
int B = (batched || gather) ? x.shape(-2) : x.size() / D;
int N = (batched || gather) ? out.size() / B / O : 1;
std::string name = gather ? "bs_" : "";
bool matrix = false;
bool aligned = false;
bool quad = false;
if (transpose) {
if (B < 6 && (D == 128 || D == 64) && is_power_of_2(bits)) {
name += "qmv_quad";
constexpr int quads_per_simd = 8;
constexpr int results_per_quadgroup = 8;
int bo = quads_per_simd * results_per_quadgroup;
int simdgroup_size = 32;
group_dims = MTL::Size(simdgroup_size, 1, 1);
grid_dims = MTL::Size((O + bo - 1) / bo, B, N);
quad = true;
} else if (B < 6 && O % 8 == 0 && D % 512 == 0 && D >= 512) {
name += "qmv_fast";
int bo = 8;
int bd = 32;
group_dims = MTL::Size(bd, 2, 1);
grid_dims = MTL::Size(B, O / bo, N);
} else if (B < 6) {
name += "qmv";
int bo = 8;
int bd = 32;
group_dims = MTL::Size(bd, 2, 1);
grid_dims = MTL::Size(B, (O + bo - 1) / bo, N);
} else {
int wn = 2;
int wm = 2;
int bm = 32;
int bn = 32;
group_dims = MTL::Size(32, wn, wm);
grid_dims = MTL::Size((O + bn - 1) / bn, (B + bm - 1) / bm, N);
name += "qmm_t";
matrix = true;
aligned = true;
}
} else {
if (B < 4 && D >= 1024 && !gather) {
return qvm_split_k(inputs, out, group_size, bits, D, O, B, N, s);
} else if (B < 4) {
name += "qvm";
int bo = 64;
int bd = 32;
group_dims = MTL::Size(bd, 2, 1);
grid_dims = MTL::Size(B, O / bo, N);
} else {
name += "qmm_n";
int wn = 2;
int wm = 2;
int bm = 32;
int bn = 32;
group_dims = MTL::Size(32, wn, wm);
grid_dims = MTL::Size(O / bn, (B + bm - 1) / bm, N);
matrix = true;
if ((O % bn) != 0) {
std::ostringstream msg;
msg << "[quantized_matmul] The output size should be divisible by "
<< bn << " but received " << O << ".";
throw std::runtime_error(msg.str());
}
}
}
launch_qmm(
name,
inputs,
out,
group_size,
bits,
D,
O,
B,
N,
group_dims,
grid_dims,
batched,
matrix,
gather,
aligned,
quad,
s);
}
void QuantizedMatmul::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 4);
qmm_op(
inputs, out, transpose_, group_size_, bits_, /*gather=*/false, stream());
}
void GatherQMM::eval_gpu(const std::vector<array>& inputs, array& out) {
assert(inputs.size() == 6);
qmm_op(
inputs, out, transpose_, group_size_, bits_, /*gather=*/true, stream());
}
void fast::AffineQuantize::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
auto& w_pre = inputs[0];
auto& out = outputs[0];
out.set_data(allocator::malloc_or_wait(out.nbytes()));
auto& s = stream();
auto& d = metal::device(s.device);
std::vector<array> copies;
auto ensure_row_contiguous = [&copies, &s](const array& arr) {
if (arr.flags().row_contiguous) {
return arr;
} else {
array arr_copy(arr.shape(), arr.dtype(), nullptr, {});
copy_gpu(arr, arr_copy, CopyType::General, s);
copies.push_back(arr_copy);
return arr_copy;
}
};
auto w = ensure_row_contiguous(w_pre);
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_input_array(w, 0);
if (dequantize_) {
auto& scales_pre = inputs[1];
auto& biases_pre = inputs[2];
auto scales = ensure_row_contiguous(scales_pre);
auto biases = ensure_row_contiguous(biases_pre);
compute_encoder.set_input_array(scales, 1);
compute_encoder.set_input_array(biases, 2);
compute_encoder.set_output_array(out, 3);
} else {
auto& scales = outputs[1];
auto& biases = outputs[2];
scales.set_data(allocator::malloc_or_wait(scales.nbytes()));
biases.set_data(allocator::malloc_or_wait(biases.nbytes()));
compute_encoder.set_output_array(out, 1);
compute_encoder.set_output_array(scales, 2);
compute_encoder.set_output_array(biases, 3);
}
std::ostringstream kname;
auto type_string = dequantize_ ? get_type_string(out.dtype())
: get_type_string(w_pre.dtype());
auto kernel_func = dequantize_ ? "affine_dequantize" : "affine_quantize";
kname << kernel_func << "_" << type_string << "_gs_" << group_size_ << "_b_"
<< bits_;
auto template_def = get_template_definition(
kname.str(), kernel_func, type_string, group_size_, bits_);
auto kernel = get_quantized_kernel(d, kname.str(), template_def);
compute_encoder.set_compute_pipeline_state(kernel);
// Treat uint32 as uint8 in kernel
constexpr int uint8_per_uint32 = 4;
constexpr int simd_size = 32;
int packs_per_int = bits_ == 3 ? 8 : bits_ == 6 ? 4 : 8 / bits_;
int per_thread = dequantize_ ? packs_per_int : group_size_ / simd_size;
size_t nthreads =
dequantize_ ? out.size() / packs_per_int : w.size() / per_thread;
NS::UInteger thread_group_size = kernel->maxTotalThreadsPerThreadgroup();
if (thread_group_size > nthreads) {
thread_group_size = nthreads;
}
auto group_dims = MTL::Size(thread_group_size, 1, 1);
bool use_2d = nthreads > UINT_MAX;
auto grid_shape = w.shape();
if (dequantize_) {
grid_shape.back() *= uint8_per_uint32;
} else {
grid_shape.back() /= per_thread;
}
MTL::Size grid_dims = use_2d ? get_2d_grid_dims(grid_shape, w.strides())
: MTL::Size(nthreads, 1, 1);
compute_encoder.dispatch_threads(grid_dims, group_dims);
d.add_temporaries(std::move(copies), s.index);
}
} // namespace mlx::core