mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
78 lines
2.0 KiB
ReStructuredText
78 lines
2.0 KiB
ReStructuredText
.. _linear_regression:
|
|
|
|
Linear Regression
|
|
-----------------
|
|
|
|
Let's implement a basic linear regression model as a starting point to
|
|
learn MLX. First import the core package and setup some problem metadata:
|
|
|
|
.. code-block:: python
|
|
|
|
import mlx.core as mx
|
|
|
|
num_features = 100
|
|
num_examples = 1_000
|
|
num_iters = 10_000 # iterations of SGD
|
|
lr = 0.01 # learning rate for SGD
|
|
|
|
|
|
We'll generate a synthetic dataset by:
|
|
|
|
1. Sampling the design matrix ``X``.
|
|
2. Sampling a ground truth parameter vector ``w_star``.
|
|
3. Compute the dependent values ``y`` by adding Gaussian noise to ``X @ w_star``.
|
|
|
|
.. code-block:: python
|
|
|
|
# True parameters
|
|
w_star = mx.random.normal((num_features,))
|
|
|
|
# Input examples (design matrix)
|
|
X = mx.random.normal((num_examples, num_features))
|
|
|
|
# Noisy labels
|
|
eps = 1e-2 * mx.random.normal((num_examples,))
|
|
y = X @ w_star + eps
|
|
|
|
|
|
We will use SGD to find the optimal weights. To start, define the squared loss
|
|
and get the gradient function of the loss with respect to the parameters.
|
|
|
|
.. code-block:: python
|
|
|
|
def loss_fn(w):
|
|
return 0.5 * mx.mean(mx.square(X @ w - y))
|
|
|
|
grad_fn = mx.grad(loss_fn)
|
|
|
|
Start the optimization by initializing the parameters ``w`` randomly. Then
|
|
repeatedly update the parameters for ``num_iters`` iterations.
|
|
|
|
.. code-block:: python
|
|
|
|
w = 1e-2 * mx.random.normal((num_features,))
|
|
|
|
for _ in range(num_iters):
|
|
grad = grad_fn(w)
|
|
w = w - lr * grad
|
|
mx.eval(w)
|
|
|
|
Finally, compute the loss of the learned parameters and verify that they are
|
|
close to the ground truth parameters.
|
|
|
|
.. code-block:: python
|
|
|
|
loss = loss_fn(w)
|
|
error_norm = mx.sum(mx.square(w - w_star)).item() ** 0.5
|
|
|
|
print(
|
|
f"Loss {loss.item():.5f}, |w-w*| = {error_norm:.5f}, "
|
|
)
|
|
# Should print something close to: Loss 0.00005, |w-w*| = 0.00364
|
|
|
|
Complete `linear regression
|
|
<https://github.com/ml-explore/mlx/tree/main/examples/python/linear_regression.py>`_
|
|
and `logistic regression
|
|
<https://github.com/ml-explore/mlx/tree/main/examples/python/logistic_regression.py>`_
|
|
examples are available in the MLX GitHub repo.
|