mlx/docs/src/examples/linear_regression.rst
2023-11-29 10:52:08 -08:00

78 lines
2.0 KiB
ReStructuredText

.. _linear_regression:
Linear Regression
-----------------
Let's implement a basic linear regression model as a starting point to
learn MLX. First import the core package and setup some problem metadata:
.. code-block:: python
import mlx.core as mx
num_features = 100
num_examples = 1_000
num_iters = 10_000 # iterations of SGD
lr = 0.01 # learning rate for SGD
We'll generate a synthetic dataset by:
1. Sampling the design matrix ``X``.
2. Sampling a ground truth parameter vector ``w_star``.
3. Compute the dependent values ``y`` by adding Gaussian noise to ``X @ w_star``.
.. code-block:: python
# True parameters
w_star = mx.random.normal((num_features,))
# Input examples (design matrix)
X = mx.random.normal((num_examples, num_features))
# Noisy labels
eps = 1e-2 * mx.random.normal((num_examples,))
y = X @ w_star + eps
We will use SGD to find the optimal weights. To start, define the squared loss
and get the gradient function of the loss with respect to the parameters.
.. code-block:: python
def loss_fn(w):
return 0.5 * mx.mean(mx.square(X @ w - y))
grad_fn = mx.grad(loss_fn)
Start the optimization by initializing the parameters ``w`` randomly. Then
repeatedly update the parameters for ``num_iters`` iterations.
.. code-block:: python
w = 1e-2 * mx.random.normal((num_features,))
for _ in range(num_iters):
grad = grad_fn(w)
w = w - lr * grad
mx.eval(w)
Finally, compute the loss of the learned parameters and verify that they are
close to the ground truth parameters.
.. code-block:: python
loss = loss_fn(w)
error_norm = mx.sum(mx.square(w - w_star)).item() ** 0.5
print(
f"Loss {loss.item():.5f}, |w-w*| = {error_norm:.5f}, "
)
# Should print something close to: Loss 0.00005, |w-w*| = 0.00364
Complete `linear regression
<https://github.com/ml-explore/mlx/tree/main/examples/python/linear_regression.py>`_
and `logistic regression
<https://github.com/ml-explore/mlx/tree/main/examples/python/logistic_regression.py>`_
examples are available in the MLX GitHub repo.