mlx/examples/cpp/linear_regression.cpp
2023-11-29 10:52:08 -08:00

53 lines
1.3 KiB
C++

#include <chrono>
#include <cmath>
#include <iostream>
#include "mlx/mlx.h"
#include "timer.h"
/**
* An example of linear regression with MLX.
*/
using namespace mlx::core;
int main() {
int num_features = 100;
int num_examples = 1'000;
int num_iters = 10'000;
float learning_rate = 0.01;
// True parameters
auto w_star = random::normal({num_features});
// The input examples (design matrix)
auto X = random::normal({num_examples, num_features});
// Noisy labels
auto eps = 1e-2 * random::normal({num_examples});
auto y = matmul(X, w_star) + eps;
// Initialize random parameters
array w = 1e-2 * random::normal({num_features});
auto loss_fn = [&](array w) {
auto yhat = matmul(X, w);
return (0.5f / num_examples) * sum(square(yhat - y));
};
auto grad_fn = grad(loss_fn);
auto tic = timer::time();
for (int it = 0; it < num_iters; ++it) {
auto grad = grad_fn(w);
w = w - learning_rate * grad;
eval(w);
}
auto toc = timer::time();
auto loss = loss_fn(w);
auto error_norm = std::sqrt(sum(square(w - w_star)).item<float>());
auto throughput = num_iters / timer::seconds(toc - tic);
std::cout << "Loss " << loss << ", |w - w*| = " << error_norm
<< ", Throughput " << throughput << " (it/s)." << std::endl;
}