mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
232 lines
8.1 KiB
Python
232 lines
8.1 KiB
Python
import unittest
|
|
|
|
import mlx.core as mx
|
|
import mlx.nn as nn
|
|
from mlx.utils import tree_flatten, tree_map, tree_unflatten
|
|
import numpy as np
|
|
import os
|
|
import tempfile
|
|
|
|
import mlx_tests
|
|
|
|
|
|
class TestNN(mlx_tests.MLXTestCase):
|
|
def test_linear(self):
|
|
inputs = mx.zeros((10, 4))
|
|
layer = nn.Linear(input_dims=4, output_dims=8)
|
|
outputs = layer(inputs)
|
|
self.assertEqual(tuple(outputs.shape), (10, 8))
|
|
|
|
def test_cross_entropy(self):
|
|
logits = mx.array([[0.0, -float("inf")], [-float("inf"), 0.0]])
|
|
targets = mx.array([0, 1])
|
|
losses = nn.losses.cross_entropy(logits, targets)
|
|
self.assertTrue(mx.array_equal(losses, mx.zeros((2,))))
|
|
|
|
def test_gelu(self):
|
|
inputs = [1.15286231, -0.81037411, 0.35816911, 0.77484438, 0.66276414]
|
|
|
|
# From: jax.nn.gelu(np.array(inputs), approximate=False)
|
|
expected = np.array(
|
|
[1.0093501, -0.16925684, 0.22918941, 0.60498625, 0.49459383]
|
|
)
|
|
|
|
out = nn.GELU()(mx.array(inputs))
|
|
self.assertTrue(np.allclose(out, expected))
|
|
|
|
# Crudely check the approximations
|
|
x = mx.arange(-6.0, 6.0, 12 / 100)
|
|
y = nn.gelu(x)
|
|
y_hat1 = nn.gelu_approx(x)
|
|
y_hat2 = nn.gelu_fast_approx(x)
|
|
self.assertLess(mx.abs(y - y_hat1).max(), 0.0003)
|
|
self.assertLess(mx.abs(y - y_hat2).max(), 0.02)
|
|
|
|
def test_group_norm(self):
|
|
x = mx.arange(100, dtype=mx.float32)
|
|
x = x.reshape(1, 10, 10, 1)
|
|
x = mx.broadcast_to(x, (2, 10, 10, 4))
|
|
x = mx.concatenate([x, 0.5 * x], axis=-1)
|
|
|
|
# Group norm in groups last mode
|
|
g = nn.GroupNorm(2, 8)
|
|
y = g(x)
|
|
means = y.reshape(2, -1, 2).mean(axis=1)
|
|
var = y.reshape(2, -1, 2).var(axis=1)
|
|
self.assertTrue(np.allclose(means, np.zeros_like(means), atol=1e-6))
|
|
self.assertTrue(np.allclose(var, np.ones_like(var), atol=1e-6))
|
|
g.weight = g.weight * 2
|
|
g.bias = g.bias + 3
|
|
y = g(x)
|
|
means = y.reshape(2, -1, 2).mean(axis=1)
|
|
var = y.reshape(2, -1, 2).var(axis=1)
|
|
self.assertTrue(np.allclose(means, 3 * np.ones_like(means), atol=1e-6))
|
|
self.assertTrue(np.allclose(var, 4 * np.ones_like(var), atol=1e-6))
|
|
|
|
# Group norm in groups first mode
|
|
g = nn.GroupNorm(2, 8, pytorch_compatible=True)
|
|
y = g(x)
|
|
means = y.reshape(2, -1, 2, 4).mean(axis=(1, -1))
|
|
var = y.reshape(2, -1, 2, 4).var(axis=(1, -1))
|
|
self.assertTrue(np.allclose(means, np.zeros_like(means), atol=1e-6))
|
|
self.assertTrue(np.allclose(var, np.ones_like(var), atol=1e-6))
|
|
g.weight = g.weight * 2
|
|
g.bias = g.bias + 3
|
|
y = g(x)
|
|
means = y.reshape(2, -1, 2, 4).mean(axis=(1, -1))
|
|
var = y.reshape(2, -1, 2, 4).var(axis=(1, -1))
|
|
self.assertTrue(np.allclose(means, 3 * np.ones_like(means), atol=1e-6))
|
|
self.assertTrue(np.allclose(var, 4 * np.ones_like(var), atol=1e-6))
|
|
|
|
def test_conv1d(self):
|
|
N = 5
|
|
L = 12
|
|
ks = 3
|
|
C_in = 2
|
|
C_out = 4
|
|
x = mx.ones((N, L, C_in))
|
|
c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks)
|
|
c.weight = mx.ones_like(c.weight)
|
|
y = c(x)
|
|
self.assertEqual(y.shape, [N, L - ks + 1, C_out])
|
|
self.assertTrue(mx.allclose(y, mx.full(y.shape, ks * C_in, mx.float32)))
|
|
|
|
c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, stride=2)
|
|
y = c(x)
|
|
self.assertEqual(y.shape, [N, (L - ks + 1) // 2, C_out])
|
|
self.assertTrue("bias" in c.parameters())
|
|
|
|
c = nn.Conv1d(in_channels=C_in, out_channels=C_out, kernel_size=ks, bias=False)
|
|
self.assertTrue("bias" not in c.parameters())
|
|
|
|
def test_conv2d(self):
|
|
x = mx.ones((4, 8, 8, 3))
|
|
c = nn.Conv2d(3, 1, 8)
|
|
y = c(x)
|
|
self.assertEqual(y.shape, [4, 1, 1, 1])
|
|
c.weight = mx.ones_like(c.weight) / 8 / 8 / 3
|
|
y = c(x)
|
|
self.assertTrue(np.allclose(y[:, 0, 0, 0], x.mean(axis=(1, 2, 3))))
|
|
|
|
# 3x3 conv no padding stride 1
|
|
c = nn.Conv2d(3, 8, 3)
|
|
y = c(x)
|
|
self.assertEqual(y.shape, [4, 6, 6, 8])
|
|
self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
|
|
|
|
# 3x3 conv padding 1 stride 1
|
|
c = nn.Conv2d(3, 8, 3, padding=1)
|
|
y = c(x)
|
|
self.assertEqual(y.shape, [4, 8, 8, 8])
|
|
self.assertLess(mx.abs(y[:, 1:7, 1:7] - c.weight.sum((1, 2, 3))).max(), 1e-4)
|
|
self.assertLess(
|
|
mx.abs(y[:, 0, 0] - c.weight[:, 1:, 1:].sum(axis=(1, 2, 3))).max(),
|
|
1e-4,
|
|
)
|
|
self.assertLess(
|
|
mx.abs(y[:, 7, 7] - c.weight[:, :-1, :-1].sum(axis=(1, 2, 3))).max(),
|
|
1e-4,
|
|
)
|
|
self.assertLess(
|
|
mx.abs(y[:, 1:7, 7] - c.weight[:, :, :-1].sum(axis=(1, 2, 3))).max(),
|
|
1e-4,
|
|
)
|
|
self.assertLess(
|
|
mx.abs(y[:, 7, 1:7] - c.weight[:, :-1, :].sum(axis=(1, 2, 3))).max(),
|
|
1e-4,
|
|
)
|
|
|
|
# 3x3 conv no padding stride 2
|
|
c = nn.Conv2d(3, 8, 3, padding=0, stride=2)
|
|
y = c(x)
|
|
self.assertEqual(y.shape, [4, 3, 3, 8])
|
|
self.assertLess(mx.abs(y - c.weight.sum((1, 2, 3))).max(), 1e-4)
|
|
|
|
def test_sequential(self):
|
|
x = mx.ones((10, 2))
|
|
m = nn.Sequential(nn.Linear(2, 10), nn.ReLU(), nn.Linear(10, 1))
|
|
y = m(x)
|
|
self.assertEqual(y.shape, [10, 1])
|
|
params = m.parameters()
|
|
self.assertTrue("layers" in params)
|
|
self.assertEqual(len(params["layers"]), 3)
|
|
self.assertTrue("weight" in params["layers"][0])
|
|
self.assertEqual(len(params["layers"][1]), 0)
|
|
self.assertTrue("weight" in params["layers"][2])
|
|
|
|
m.layers[1] = nn.relu
|
|
y2 = m(x)
|
|
self.assertTrue(mx.array_equal(y, y2))
|
|
|
|
def test_module_utilities(self):
|
|
m = nn.Sequential(
|
|
nn.Sequential(nn.Linear(2, 10), nn.relu),
|
|
nn.Sequential(nn.Linear(10, 10), nn.ReLU()),
|
|
nn.Linear(10, 1),
|
|
mx.sigmoid,
|
|
)
|
|
|
|
children = m.children()
|
|
self.assertTrue(isinstance(children, dict))
|
|
self.assertEqual(len(children), 1)
|
|
self.assertTrue(isinstance(children["layers"], list))
|
|
self.assertEqual(len(children["layers"]), 4)
|
|
self.assertEqual(children["layers"][3], {})
|
|
flat_children = tree_flatten(children, is_leaf=nn.Module.is_module)
|
|
self.assertEqual(len(flat_children), 3)
|
|
|
|
leaves = tree_flatten(m.leaf_modules(), is_leaf=nn.Module.is_module)
|
|
self.assertEqual(len(leaves), 4)
|
|
self.assertEqual(leaves[0][0], "layers.0.layers.0")
|
|
self.assertEqual(leaves[1][0], "layers.1.layers.0")
|
|
self.assertEqual(leaves[2][0], "layers.1.layers.1")
|
|
self.assertEqual(leaves[3][0], "layers.2")
|
|
self.assertTrue(leaves[0][1] is m.layers[0].layers[0])
|
|
self.assertTrue(leaves[1][1] is m.layers[1].layers[0])
|
|
self.assertTrue(leaves[2][1] is m.layers[1].layers[1])
|
|
self.assertTrue(leaves[3][1] is m.layers[2])
|
|
|
|
m.eval()
|
|
|
|
def assert_not_training(k, m):
|
|
self.assertFalse(m.training)
|
|
|
|
m.apply_to_modules(assert_not_training)
|
|
|
|
m.train()
|
|
|
|
def assert_training(k, m):
|
|
self.assertTrue(m.training)
|
|
|
|
m.apply_to_modules(assert_training)
|
|
|
|
def test_sin_pe(self):
|
|
m = nn.SinusoidalPositionalEncoding(16, min_freq=0.01)
|
|
x = mx.arange(10)
|
|
y = m(x)
|
|
|
|
self.assertEqual(y.shape, [10, 16])
|
|
similarities = y @ y.T
|
|
self.assertLess(
|
|
mx.abs(similarities[mx.arange(10), mx.arange(10)] - 1).max(), 1e-5
|
|
)
|
|
|
|
def test_io(self):
|
|
def make_model():
|
|
return nn.Sequential(nn.Linear(2, 2), nn.ReLU(), nn.Linear(2, 2))
|
|
|
|
m = make_model()
|
|
tdir = tempfile.TemporaryDirectory()
|
|
file = os.path.join(tdir.name, "model.npz")
|
|
m.save_weights(file)
|
|
m_load = make_model()
|
|
m_load.load_weights(file)
|
|
tdir.cleanup()
|
|
|
|
eq_tree = tree_map(mx.array_equal, m.parameters(), m_load.parameters())
|
|
self.assertTrue(all(tree_flatten(eq_tree)))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|