mirror of
https://github.com/ml-explore/mlx.git
synced 2025-06-24 01:17:26 +08:00
168 lines
5.3 KiB
Python
168 lines
5.3 KiB
Python
import unittest
|
|
|
|
import mlx.core as mx
|
|
|
|
import mlx_tests
|
|
|
|
|
|
class TestVmap(mlx_tests.MLXTestCase):
|
|
def test_basics(self):
|
|
# Can't vmap over scalars
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp)(mx.array(1.0))
|
|
|
|
# Invalid input
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp)("hello")
|
|
|
|
# Invalid axes
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp, in_axes="hello")(mx.array([0, 1]))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp, in_axes=2)(mx.array([0, 1]))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp, out_axes="hello")(mx.array([0, 1]))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(mx.exp, out_axes=2)(mx.array([0, 1]))
|
|
|
|
def test_unary(self):
|
|
ops = [
|
|
"abs",
|
|
"cos",
|
|
"erf",
|
|
"erfinv",
|
|
"exp",
|
|
"log",
|
|
"log1p",
|
|
"log2",
|
|
"log10",
|
|
"logical_not",
|
|
"negative",
|
|
"reciprocal",
|
|
"rsqrt",
|
|
"sigmoid",
|
|
"sign",
|
|
"sin",
|
|
"sqrt",
|
|
"square",
|
|
]
|
|
ops = ["erfinv"]
|
|
for opname in ops:
|
|
with self.subTest(op=opname):
|
|
op = getattr(mx, opname)
|
|
x = mx.arange(5)
|
|
y = mx.vmap(op)(x)
|
|
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
|
|
|
|
x = mx.arange(8).reshape(2, 4)
|
|
y = mx.vmap(op)(x)
|
|
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
|
|
|
|
y = mx.vmap(op, in_axes=1, out_axes=1)(x)
|
|
self.assertTrue(mx.array_equal(y, op(x), equal_nan=True))
|
|
|
|
def test_binary(self):
|
|
ops = [
|
|
"add",
|
|
"divide",
|
|
"equal",
|
|
"greater",
|
|
"greater_equal",
|
|
"less",
|
|
"less_equal",
|
|
"logaddexp",
|
|
"maximum",
|
|
"minimum",
|
|
"multiply",
|
|
"power",
|
|
"subtract",
|
|
]
|
|
for opname in ops:
|
|
with self.subTest(op=opname):
|
|
op = getattr(mx, opname)
|
|
x = mx.random.uniform(shape=(5,))
|
|
y = mx.random.uniform(shape=(5,))
|
|
out = mx.vmap(op)(x, y)
|
|
self.assertTrue(mx.array_equal(out, op(x, y)))
|
|
|
|
x = mx.random.uniform(shape=(2, 4))
|
|
y = mx.random.uniform(shape=(2, 4))
|
|
out = mx.vmap(op)(x, y)
|
|
self.assertTrue(mx.array_equal(out, op(x, y)))
|
|
|
|
out = mx.vmap(op, in_axes=(0, 0), out_axes=0)(x, y)
|
|
self.assertTrue(mx.array_equal(out, op(x, y)))
|
|
|
|
y = mx.random.uniform(shape=(4, 2))
|
|
out = mx.vmap(op, in_axes=(0, 1), out_axes=0)(x, y)
|
|
self.assertTrue(mx.array_equal(out, op(x, y.T)))
|
|
|
|
out = mx.vmap(op, in_axes=(0, 1), out_axes=1)(x, y)
|
|
self.assertTrue(mx.array_equal(out, op(x, y.T).T))
|
|
|
|
def test_tree(self):
|
|
def my_fun(tree):
|
|
return (tree["a"] + tree["b"][0]) * tree["b"][1]
|
|
|
|
tree = {
|
|
"a": mx.random.uniform(shape=(2, 4)),
|
|
"b": (
|
|
mx.random.uniform(shape=(2, 4)),
|
|
mx.random.uniform(shape=(2, 4)),
|
|
),
|
|
}
|
|
out = mx.vmap(my_fun)(tree)
|
|
expected = my_fun(tree)
|
|
self.assertTrue(mx.array_equal(out, my_fun(tree)))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(my_fun, in_axes={"a": 0, "b": 0}, out_axes=0)(tree)
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(my_fun, in_axes={"a": 0, "b": ((0, 0), 0)}, out_axes=0)(tree)
|
|
|
|
out = mx.vmap(my_fun, in_axes=({"a": 0, "b": 0},), out_axes=0)(tree)
|
|
self.assertTrue(mx.array_equal(out, my_fun(tree)))
|
|
|
|
out = mx.vmap(my_fun, in_axes=({"a": 0, "b": (0, 0)},), out_axes=0)(tree)
|
|
self.assertTrue(mx.array_equal(out, my_fun(tree)))
|
|
|
|
tree = {
|
|
"a": mx.random.uniform(shape=(2, 4)),
|
|
"b": (
|
|
mx.random.uniform(shape=(4, 2)),
|
|
mx.random.uniform(shape=(4, 2)),
|
|
),
|
|
}
|
|
out = mx.vmap(my_fun, in_axes=({"a": 0, "b": (1, 1)},), out_axes=0)(tree)
|
|
expected = (tree["a"] + tree["b"][0].T) * tree["b"][1].T
|
|
self.assertTrue(mx.array_equal(out, expected))
|
|
|
|
def my_fun(x, y):
|
|
return {"a": x + y, "b": x * y}
|
|
|
|
x = mx.random.uniform(shape=(2, 4))
|
|
y = mx.random.uniform(shape=(2, 4))
|
|
out = mx.vmap(my_fun, in_axes=0, out_axes=0)(x, y)
|
|
expected = my_fun(x, y)
|
|
self.assertTrue(mx.array_equal(out["a"], expected["a"]))
|
|
self.assertTrue(mx.array_equal(out["b"], expected["b"]))
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(my_fun, in_axes=0, out_axes=(0, 1))(x, y)
|
|
|
|
with self.assertRaises(ValueError):
|
|
mx.vmap(my_fun, in_axes=0, out_axes={"a": 0, "c": 1})(x, y)
|
|
|
|
out = mx.vmap(my_fun, in_axes=0, out_axes={"a": 1, "b": 0})(x, y)
|
|
expected = my_fun(x, y)
|
|
self.assertTrue(mx.array_equal(out["a"].T, expected["a"]))
|
|
self.assertTrue(mx.array_equal(out["b"], expected["b"]))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|