mirror of
				https://github.com/ml-explore/mlx.git
				synced 2025-11-04 10:38:10 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			108 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			108 lines
		
	
	
		
			2.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import math
 | 
						|
import time
 | 
						|
 | 
						|
import mlx.core as mx
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
 | 
						|
N_warmup = 10
 | 
						|
N_iter_bench = 100
 | 
						|
N_iter_func = 5
 | 
						|
 | 
						|
 | 
						|
def bench(f, a, b):
 | 
						|
    for i in range(N_warmup):
 | 
						|
        f(a, b)
 | 
						|
    torch.mps.synchronize()
 | 
						|
 | 
						|
    s = time.perf_counter_ns()
 | 
						|
    for i in range(N_iter_bench):
 | 
						|
        f(a, b)
 | 
						|
    e = time.perf_counter_ns()
 | 
						|
    return (e - s) * 1e-9
 | 
						|
 | 
						|
 | 
						|
def make_mx_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
 | 
						|
    def mx_conv_2D(a, b):
 | 
						|
        ys = []
 | 
						|
        for i in range(N_iter_func):
 | 
						|
            y = mx.conv2d(a, b, stride=strides, padding=padding, groups=groups)
 | 
						|
            ys.append(y)
 | 
						|
        mx.eval(ys)
 | 
						|
        return ys
 | 
						|
 | 
						|
    return mx_conv_2D
 | 
						|
 | 
						|
 | 
						|
def make_pt_conv_2D(strides=(1, 1), padding=(0, 0), groups=1):
 | 
						|
    @torch.no_grad()
 | 
						|
    def pt_conv_2D(a, b):
 | 
						|
        ys = []
 | 
						|
        for i in range(N_iter_func):
 | 
						|
            y = torch.conv2d(a, b, stride=strides, padding=padding, groups=groups)
 | 
						|
            ys.append(y)
 | 
						|
        torch.mps.synchronize()
 | 
						|
        return ys
 | 
						|
 | 
						|
    return pt_conv_2D
 | 
						|
 | 
						|
 | 
						|
def bench_shape(N, H, W, C, kH, kW, O, strides, padding, groups, np_dtype):
 | 
						|
    scale = 1.0 / math.sqrt(kH * kH * C)
 | 
						|
    a_np = np.random.uniform(0, 0.5, (N, H, W, C)).astype(np_dtype)
 | 
						|
    b_np = np.random.uniform(-scale, scale, (O, kH, kW, int(C / groups))).astype(
 | 
						|
        np_dtype
 | 
						|
    )
 | 
						|
 | 
						|
    a_mx = mx.array(a_np)
 | 
						|
    b_mx = mx.array(b_np)
 | 
						|
 | 
						|
    a_pt = torch.from_numpy(a_np.transpose((0, 3, 1, 2))).to("mps")
 | 
						|
    b_pt = torch.from_numpy(b_np.transpose((0, 3, 1, 2))).to("mps")
 | 
						|
 | 
						|
    torch.mps.synchronize()
 | 
						|
 | 
						|
    f_mx = make_mx_conv_2D(strides, padding, groups)
 | 
						|
    f_pt = make_pt_conv_2D(strides, padding, groups)
 | 
						|
 | 
						|
    time_torch = bench(f_pt, a_pt, b_pt)
 | 
						|
    time_mlx = bench(f_mx, a_mx, b_mx)
 | 
						|
 | 
						|
    out_mx = mx.conv2d(a_mx, b_mx, stride=strides, padding=padding, groups=groups)
 | 
						|
    out_pt = torch.conv2d(
 | 
						|
        a_pt.to("cpu"), b_pt.to("cpu"), stride=strides, padding=padding, groups=groups
 | 
						|
    )
 | 
						|
    out_pt = torch.permute(out_pt, (0, 2, 3, 1))
 | 
						|
    out_pt = out_pt.numpy(force=True)
 | 
						|
 | 
						|
    atol = 2e-5 if np_dtype == np.float32 else 1e-4
 | 
						|
 | 
						|
    if not np.allclose(out_pt, out_mx, atol=atol):
 | 
						|
        print(
 | 
						|
            f"Failed at {(N, H, W, C)}, {(O, kH, kW, C)} [strides = {strides}, padding = {padding}, groups = {groups}] with max(|a - b|) = {np.max(np.abs(out_pt - out_mx))}"
 | 
						|
        )
 | 
						|
 | 
						|
    return time_mlx, time_torch
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    dtype = "float32"
 | 
						|
    shapes = (
 | 
						|
        (4, 32, 32, 21, 3, 3, 128),
 | 
						|
        (4, 32, 32, 21, 3, 3, 37),
 | 
						|
        (4, 32, 32, 370, 3, 3, 370),
 | 
						|
        (4, 32, 32, 370, 7, 7, 128),
 | 
						|
        (2, 320, 640, 21, 7, 7, 21),
 | 
						|
    )
 | 
						|
    for N, H, W, C, kh, kw, O in shapes:
 | 
						|
        time_mlx, time_torch = bench_shape(
 | 
						|
            N, H, W, C, kh, kw, O, (1, 1), (0, 0), 1, dtype
 | 
						|
        )
 | 
						|
        diff = time_torch / time_mlx - 1.0
 | 
						|
 | 
						|
        print(
 | 
						|
            f"({N}, {H:3d}, {W:3d}, {C:3d}), ({O:3d}, {kh:2d}, {kw:2d}, {C:3d}), {dtype}, {100. * diff:+5.2f}%"
 | 
						|
        )
 | 
						|
        if time_mlx >= 2.0 * time_torch:
 | 
						|
            print("ATTENTION ^^^^^^^")
 |